Publications

Results 90051–90075 of 99,299

Search results

Jump to search filters

Batch Microreactor Studies of Lignin Depolymerization by Bases. 2. Aqueous Solvents

Miller, James E.; Evans, Lindsey; Mudd, Jason E.

Biomass feedstocks contain roughly 15-30% lignin, a substance that can not be converted to fermentable sugars. Hence, most schemes for producing biofuels assume that the lignin coproduct will be utilized as boiler fuel. Yet, the chemical structure of lignin suggests that it will make an excellent high value fuel additive, if it can be broken down into smaller compounds. From Fiscal year 1997 through Fiscal year 2001, Sandia National Laboratories participated in a cooperative effort with the National Renewable Energy Laboratory and the University of Utah to develop and scale a base catalyzed depolymerization (BCD) process for lignin conversion. SNL's primary role in the effort was to perform kinetic studies, examine the reaction chemistry, and to develop alternate BCD catalyst systems. This report summarizes the work performed at Sandia during Fiscal Year 1999 through Fiscal Year 2001 with aqueous systems. Work with alcohol based systems is summarized in part 1 of this report. Our study of lignin depolymerization by aqueous NaOH showed that the primary factor governing the extent of lignin conversion is the NaOH:lignin ratio. NaOH concentration is at best a secondary issue. The maximum lignin conversion is achieved at NaOH:lignin mole ratios of 1.5-2. This is consistent with acidic compounds in the depolymerized lignin neutralizing the base catalyst. The addition of CaO to NaOH improves the reaction kinetics, but not the degree of lignin conversion. The combination of Na{sub 2}CO{sub 3} and CaO offers a cost saving alternative to NaOH that performs identically to NaOH on a per Na basis. A process where CaO is regenerated from CaCO{sub 3} could offer further advantages, as could recovering the Na as Na{sub 2}CO{sub 3} or NaHCO{sub 3} by neutralization of the product solution with CO2. Model compound studies show that two types of reactions involving methoxy substituents on the aromatic ring occur: methyl group migration between phenolic groups (making and breaking ether bonds) and the loss of methyl/methoxy groups from the aromatic ring (destruction of ether linkages). The migration reactions are significantly faster than the demethylation reactions, but ultimately demethylation processes predominates.

More Details

Sandia Smart Anti-Islanding Project; Summer 2001: Task II Investigation of the Impact of Single-Phase Induction Machines in Islanded Loads: Summary of Results

Bonn, Russell H.; Gonzalez, Sigifredo

Islanding, the supply of energy to a disconnected portion of the grid, is a phenomenon that could result in personnel hazard, interfere with reclosure, or damage hardware. Considerable effort has been expended on the development of IEEE 929, a document that defines unacceptable islanding and a method for evaluating energy sources. The worst expected loads for an islanded inverter are defined in IEEE 929 as being composed of passive resistance, inductance, and capacitance. However, a controversy continues concerning the possibility that a capacitively compensated, single-phase induction motor with a very lightly damped mechanical load having a large rotational inertia would be a significantly more difficult load to shed during an island. This report documents the result of a study that shows such a motor is not a more severe case, simply a special case of the RLC network.

More Details

Experiences with FETI-DP in a Production Level Finite Element Application

Pierson, Kendall H.; Reese, Garth M.; Bhardwaj, Manoj K.; Walsh, Timothy W.; Day, David M.

We discuss application of the FETI-DP linear solver within the Salinas finite element application. An overview of Salinas and of the FETI-DP solver is presented. We discuss scalability of the software on ASCI-red, Cplant and ASCI-white. Options for solution of the coarse grid problem that results from the FETI problem are evaluated. The finite element software and solver are seen to be numerically and cpu scalable on each of these platforms. In addition, the software is very robust and can be used on a large variety of finite element models.

More Details

Development of Magnetically Excited Flexural Plate Wave Devices for Implementation as Physical, Chemical, and Acoustic Sensors, and as Integrated Micro-Pumps for Sensored Systems

Schubert, William K.; Mitchell, Mary-Anne M.; Graf, Darin C.; Shul, Randy J.; Adkins, Douglas R.; Anderson, Lawrence F.; Wessendorf, Kurt O.

The magnetically excited flexural plate wave (mag-FPW) device has great promise as a versatile sensor platform. FPW's can have better sensitivity at lower operating frequencies than surface acoustic wave (SAW) devices. Lower operating frequency (< 1 MHz for the FPW versus several hundred MHz to a few GHz for the SAW device) simplifies the control electronics and makes integration of sensor with electronics easier. Magnetic rather than piezoelectric excitation of the FPW greatly simplifies the device structure and processing by eliminating the need for piezoelectric thin films, also simplifying integration issues. The versatile mag-FPW resonator structure can potentially be configured to fulfill a number of critical functions in an autonomous sensored system. As a physical sensor, the device can be extremely sensitive to temperature, fluid flow, strain, acceleration and vibration. By coating the membrane with self-assembled monolayers (SAMs), or polymer films with selective absorption properties (originally developed for SAW sensors), the mass sensitivity of the FPW allows it to be used as biological or chemical sensors. Yet another critical need in autonomous sensor systems is the ability to pump fluid. FPW structures can be configured as micro-pumps. This report describes work done to develop mag-FPW devices as physical, chemical, and acoustic sensors, and as micro-pumps for both liquid and gas-phase analytes to enable new integrated sensing platform.

More Details

Level 1 Peer Review Process for the Sandia ASCI V and V Program: FY01 Final Report

Pilch, Martin; Froehlich, Gary K.; Hodges, Ann L.; Peercy, David E.; Trucano, Timothy G.; Moya, Jaime L.

This report describes the results of the FY01 Level 1 Peer Reviews for the Verification and Validation (V&V) Program at Sandia National Laboratories. V&V peer review at Sandia is intended to assess the ASCI (Accelerated Strategic Computing Initiative) code team V&V planning process and execution. The Level 1 Peer Review process is conducted in accordance with the process defined in SAND2000-3099. V&V Plans are developed in accordance with the guidelines defined in SAND2000-3 101. The peer review process and process for improving the Guidelines are necessarily synchronized and form parts of a larger quality improvement process supporting the ASCI V&V program at Sandia. During FY00 a prototype of the process was conducted for two code teams and their V&V Plans and the process and guidelines updated based on the prototype. In FY01, Level 1 Peer Reviews were conducted on an additional eleven code teams and their respective V&V Plans. This report summarizes the results from those peer reviews, including recommendations from the panels that conducted the reviews.

More Details

Controlatron Neutron Tube Test Suite Software Manual - Operation Manual (V2.2)

Noel, William P.; Ebbesen, Debra L.; Martinez, Monica L.; Hertrich, Robert J.; Barrett, Keith P.

The Controlatron Software Suite is a custom built application to perform automated testing of Controlatron neutron tubes. The software package was designed to allowing users to design tests and to run a series of test suites on a tube. The data is output to ASCII files of a pre-defined format for data analysis and viewing with the Controlatron Data Viewer Application. This manual discusses the operation of the Controlatron Test Suite Software and a brief discussion of state machine theory, as state machine is the functional basis of the software.

More Details

MIL-L-87177 Lubricant Bulletproofs Connectors Against Chemical and Fretting Corrosion

Hanlon, James T.; Hernandez, Virginia

Electrical connectors corrode. Even our best SA and MC connectors finished with 50 to 100 microinches of gold over 50 to 100 microinches of nickel corrode. This work started because some, but not all, lots of connectors held in KC stores for a decade had been destroyed by pore corrosion (chemical corrosion). We have identified a MIL-L-87177 lubricant that absolutely stops chemical corrosion on SA connectors, even in the most severe environments. For commercial connectors which typically have thinner plating thicknesses, not only does the lubricant significantly retard effects of chemical corrosion, but also it greatly prolongs the fretting life. This report highlights the initial development history and use of the lubricant at Bell Labs and AT&T, and the Battelle studies and the USAF experience that lead to its deployment to stop dangerous connector corrosion on the F-16. We report the Sandia, HFM&T and Battelle development work, connector qualification, and material compatibility studies that demonstrate its usefulness and safety on JTA and WR systems. We will be applying MIL-L-87177 Connector Lubricant to all new connectors that go into KC stores. We recommend that it be applied to connectors on newly built cables and equipment as well as material that recycles through manufacturing locations from the field.

More Details

Microstructure, Phase Formation, and Stress of Reactively-Deposited Metal Hydride Thin Films

Adams, David P.; Romero, Juan A.; Rodriguez, Mark A.; Floro, Jerrold A.; Kotula, Paul G.

This document summarizes research of reactively deposited metal hydride thin films and their properties. Reactive deposition processes are of interest, because desired stoichiometric phases are created in a one-step process. In general, this allows for better control of film stress compared with two-step processes that react hydrogen with pre-deposited metal films. Films grown by reactive methods potentially have improved mechanical integrity, performance and aging characteristics. The two reactive deposition techniques described in this report are reactive sputter deposition and reactive deposition involving electron-beam evaporation. Erbium hydride thin films are the main focus of this work. ErH{sub x} films are grown by ion beam sputtering erbium in the presence of hydrogen. Substrates include a Al{sub 2}O{sub 3} {l_brace}0001{r_brace}, a Al{sub 2}O{sub 3} {l_brace}1120{r_brace}, Si{l_brace}001{r_brace} having a native oxide, and polycrystalline molybdenum substrates. Scandium dideuteride films are also studied. ScD{sub x} is grown by evaporating scandium in the presence of molecular deuterium. Substrates used for scandium deuteride growth include single crystal sapphire and molybdenum-alumina cermet. Ultra-high vacuum methods are employed in all experiments to ensure the growth of high purity films, because both erbium and scandium have a strong affinity for oxygen. Film microstructure, phase, composition and stress are evaluated using a number of thin film and surface analytical techniques. In particular, we present evidence for a new erbium hydride phase, cubic erbium trihydride. This phase develops in films having a large in-plane compressive stress independent of substrate material. Erbium hydride thin films form with a strong <111> out-of-plane texture on all substrate materials. A moderate in-plane texture is also found; this crystallographic alignment forms as a result of the substrate/target geometry and not epitaxy. Multi-beam optical sensors (MOSS) are used for in-situ analysis of erbium hydride and scandium hydride film stress. These instruments probe the evolution of film stress during all stages of deposition and cooldown. Erbium hydride thin film stress is investigated for different growth conditions including temperature and sputter gas, and properties such as thermal expansion coefficient are measured. The in-situ stress measurement technique is further developed to make it suitable for manufacturing systems. New features added to this technique include the ability to monitor multiple substrates during a single deposition and a rapidly switched, tiltable mirror that accounts for small differences in sample alignment on a platen.

More Details

The Navruz Project: Transboundary Monitoring for Radionuclides and Metals in Central Asia Rivers. Sampling and Analysis Plan and Operational Manual

Passell, Howard; Barber, David S.; Betsill, Jeffrey D.; Littlefield, Adriane; Mohagheghi, Amir H.; Shanks, Sonoya T.

The transboundary nature of water resources demands a transboundary approach to their monitoring and management. However, transboundary water projects raise a challenging set of problems related to communication issues, and standardization of sampling, analysis and data management methods. This manual addresses those challenges and provides the information and guidance needed to perform the Navruz Project, a cooperative, transboundary, river monitoring project involving rivers and institutions in Kazakhstan, Kyrgyzstan, Tajikistan, and Uzbekistan facilitated by Sandia National Laboratories in the U.S. The Navruz Project focuses on waterborne radionuclides and metals because of their importance to public health and nuclear materials proliferation concerns in the region. This manual provides guidelines for participants on sample and data collection, field equipment operations and procedures, sample handling, laboratory analysis, and data management. Also included are descriptions of rivers, sampling sites and parameters on which data are collected. Data obtained in this project are shared among all participating countries and the public through an internet web site, and are available for use in further studies and in regional transboundary water resource management efforts. Overall, the project addresses three main goals: to help increase capabilities in Central Asian nations for sustainable water resources management; to provide a scientific basis for supporting nuclear transparency and non-proliferation in the region; and to help reduce the threat of conflict in Central Asia over water resources, proliferation concerns, or other factors.

More Details

Laboratory Evaluation of Damage Criteria and Creep Parameters of Tioga Dolomite and Rock Salt from Cavern Well No. 1

Lee, Moo Y.; Ehgartner, Brian L.

A suite of laboratory triaxial compression and triaxial steady-state creep tests provide quasi-static elastic constants and damage criteria for bedded rock salt and dolomite extracted from Cavern Well No.1 of the Tioga field in northern Pennsylvania. The elastic constants, quasi-static damage criteria, and creep parameters of host rocks provides information for evaluating a proposed cavern field for gas storage near Tioga, Pennsylvania. The Young's modulus of the dolomite was determined to be 6.4 ({+-}1.0) x 10{sup 6} psi, with a Poisson's ratio of 0.26 ({+-}0.04). The elastic Young's modulus was obtained from the slope of the unloading-reloading portion of the stress-strain plots as 7.8 ({+-}0.9) x 10{sup 6} psi. The damage criterion of the dolomite based on the peak load was determined to be J{sub 2}{sup 0.5} (psi) = 3113 + 0.34 I{sub 1} (psi) where I{sub 1} and J{sub 2} are first and second invariants respectively. Using the dilation limit as a threshold level for damage, the damage criterion was conservatively estimated as J{sub 2}{sup 0.5} (psi) = 2614 + 0.30 I{sub 1} (psi). The Young's modulus of the rock salt, which will host the storage cavern, was determined to be 2.4 ({+-}0.65) x 10{sup 6} psi, with a Poisson's ratio of 0.24 ({+-}0.07). The elastic Young's modulus was determined to be 5.0 ({+-}0.46) x 10{sup 6} psi. Unlike the dolomite specimens under triaxial compression, rock salt specimens did not show shear failure with peak axial load. Instead, most specimens showed distinct dilatancy as an indication of internal damage. Based on dilation limit, the damage criterion for the rock salt was estimated as J{sub 2}{sup 0.5} (psi) = 704 + 0.17 I{sub 1} (psi). In order to determine the time dependent deformation of the rock salt, we conducted five triaxial creep tests. The creep deformation of the Tioga rock salt was modeled based on the following three-parameter power law as {var_epsilon}{sub s} = 1.2 x 10{sup -17} {sigma}{sup 4.75} exp(-6161/T), where {var_epsilon}{sub s} is the steady state strain rate in s{sup -1}, {sigma} is the applied axial stress difference in psi, and T is the temperature in Kelvin.

More Details

DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis Version 3.0 Developers Manual (title change from electronic posting)

Eldred, Michael; Giunta, Anthony A.; Van Bloemen Waanders, Bart; Wojtkiewicz, Steven F.; Hart, William E.

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, analytic reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a developers manual for the DAKOTA software and describes the DAKOTA class hierarchies and their interrelationships. It derives directly from annotation of the actual source code and provides detailed class documentation, including all member functions and attributes.

More Details

DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis Version 3.0

Eldred, Michael; Giunta, Anthony A.; Van Bloemen Waanders, Bart; Wojtkiewicz, Steven F.; Hart, William E.

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, analytic reliability, and stochastic finite element methods; parameter estimation with nonlinear least squares methods; and sensitivity analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a user's manual for the DAKOTA software and provides capability overviews and procedures for software execution, as well as a variety of example studies.

More Details

Umbra's High Level Architecture (HLA) Interface

Gottlieb, Eric J.; Mcdonald, Michael J.; Oppel, Frederick J.

This report describes Umbra's High Level Architecture HLA library. This library serves as an interface to the Defense Simulation and Modeling Office's (DMSO) Run Time Infrastructure Next Generation Version 1.3 (RTI NG1.3) software library and enables Umbra-based models to be federated into HLA environments. The Umbra library was built to enable the modeling of robots for military and security system concept evaluation. A first application provides component technologies that ideally fit the US Army JPSD's Joint Virtual Battlespace (JVB) simulation framework for Objective Force concept analysis. In addition to describing the Umbra HLA library, the report describes general issues of integrating Umbra with RTI code and outlines ways of building models to support particular HLA simulation frameworks like the JVB.

More Details

Sandia SCADA Program -- High Surety SCADA LDRD Final Report

Carlson, Rolf E.

Supervisory Control and Data Acquisition (SCADA) systems are a part of the nation's critical infrastructure that is especially vulnerable to attack or disruption. Sandia National Laboratories is developing a high-security SCADA specification to increase the national security posture of the U.S. Because SCADA security is an international problem and is shaped by foreign and multinational interests, Sandia is working to develop a standards-based solution through committees such as the IEC TC 57 WG 15, the IEEE Substation Committee, and the IEEE P1547-related activity on communications and controls. The accepted standards are anticipated to take the form of a Common Criteria Protection Profile. This report provides the status of work completed and discusses several challenges ahead.

More Details

Final Report for the SEED Project: ''Inexpensive Chemresistor Sensors for Real Time Ground Water Contamination Measurement''

Hughes, Robert C.; Davis, Chad E.; Thomas, Michael L.

This report details some proof-of-principle experiments we conducted under a small, one year ($100K) grant from the Strategic Environmental Research and Development Program (SERDP) under the SERDP Exploratory Development (SEED) effort. Our chemiresistor technology had been developed over the last few years for detecting volatile organic compounds (VOCs) in the air, but these sensors had never been used to detect VOCs in water. In this project we tried several different configurations of the chemiresistors to find the best method for water detection. To test the effect of direct immersion of the (non-water soluble) chemiresistors in contaminated water, we constructed a fixture that allowed liquid water to pass over the chemiresistor polymer without touching the electrical leads used to measure the electrical resistance of the chemiresistor. In subsequent experiments we designed and fabricated probes that protected the chemiresistor and electronics behind GORE-TEX{reg_sign} membranes that allowed the vapor from the VOCs and the water to reach a submerged chemiresistor without allowing the liquids to touch the chemiresistor. We also designed a vapor flow-through system that allowed the headspace vapor from contaminated water to be forced past a dry chemiresistor array. All the methods demonstrated that VOCs in a high enough concentration in water can be detected by chemiresistors, but the last method of vapor phase exposure to a dry chemiresistor gave the fastest and most repeatable measurements of contamination. Answers to questions posed by SERDP reviewers subsequent to a presentation of this material are contained in the appendix.

More Details

Volumetric Video Motion Detection for Unobtrusive Human-Computer Interaction

Small, Daniel; Carlson, Jeffrey

The computer vision field has undergone a revolution of sorts in the past five years. Moore's law has driven real-time image processing from the domain of dedicated, expensive hardware, to the domain of commercial off-the-shelf computers. This thesis describes their work on the design, analysis and implementation of a Real-Time Shape from Silhouette Sensor (RT S{sup 3}). The system produces time-varying volumetric data at real-time rates (10-30Hz). The data is in the form of binary volumetric images. Until recently, using this technique in a real-time system was impractical due to the computational burden. In this thesis they review the previous work in the field, and derive the mathematics behind volumetric calibration, silhouette extraction, and shape-from-silhouette. For the sensor implementation, they use four color camera/framegrabber pairs and a single high-end Pentium III computer. The color cameras were configured to observe a common volume. This hardware uses the RT S{sup 3} software to track volumetric motion. Two types of shape-from-silhouette algorithms were implemented and their relative performance was compared. They have also explored an application of this sensor to markerless motion tracking. In his recent review of work done in motion tracking Gavrila states that results of markerless vision based 3D tracking are still limited. The method proposed in this paper not only expands upon the previous work but will also attempt to overcome these limitations.

More Details

Combination of Evidence in Dempster-Shafer Theory

Sentz, Kari; Oberkampf, William L.

Dempster-Shafer theory offers an alternative to traditional probabilistic theory for the mathematical representation of uncertainty. The significant innovation of this framework is that it allows for the allocation of a probability mass to sets or intervals. Dempster-Shafer theory does not require an assumption regarding the probability of the individual constituents of the set or interval. This is a potentially valuable tool for the evaluation of risk and reliability in engineering applications when it is not possible to obtain a precise measurement from experiments, or when knowledge is obtained from expert elicitation. An important aspect of this theory is the combination of evidence obtained from multiple sources and the modeling of conflict between them. This report surveys a number of possible combination rules for Dempster-Shafer structures and provides examples of the implementation of these rules for discrete and interval-valued data.

More Details

A Scalable Systems Approach for Critical Infrastructure Security

Baker, Arnold B.; Woodall, Tommy D.; Hines, W.C.; Hutchinson, Robert L.; Eagan, Robert J.; Moonka, Ajoy K.; Falcone, Patricia K.; Swinson, Mark L.; Harris, Joe M.; Webb, Erik K.; Herrera, Gilbert V.

Critical infrastructures underpin the domestic security, health, safety and economic well being of the United States. They are large, widely dispersed, mostly privately owned systems operated under a mixture of federal, state and local government departments, laws and regulations. While there currently are enormous pressures to secure all aspects of all critical infrastructures immediately, budget realities limit available options. The purpose of this study is to provide a clear framework for systematically analyzing and prioritizing resources to most effectively secure US critical infrastructures from terrorist threats. It is a scalable framework (based on the interplay of consequences, threats and vulnerabilities) that can be applied at the highest national level, the component level of an individual infrastructure, or anywhere in between. This study also provides a set of key findings and a recommended approach for framework application. In addition, this study develops three laptop computer-based tools to assist with framework implementation-a Risk Assessment Credibility Tool, a Notional Risk Prioritization Tool, and a County Prioritization tool. This study's tools and insights are based on Sandia National Laboratories' many years of experience in risk, consequence, threat and vulnerability assessments, both in defense- and critical infrastructure-related areas.

More Details

Final Report for the Account Creation/Deletion Reenginering Task for the Scientific Computing Department

Jennings, Barbara J.; Mcallister, Paula L.

In October 2000, the personnel responsible for administration of the corporate computers managed by the Scientific Computing Department assembled to reengineer the process of creating and deleting users' computer accounts. Using the Carnegie Mellon Software Engineering Institute (SEI) Capability Maturity Model (CMM) for quality improvement process, the team performed the reengineering by way of process modeling, defining and measuring the maturity of the processes, per SEI and CMM practices. The computers residing in the classified environment are bound by security requirements of the Secure Classified Network (SCN) Security Plan. These security requirements delimited the scope of the project, specifically mandating validation of all user accounts on the central corporate computer systems. System administrators, in addition to their assigned responsibilities, were spending valuable hours performing the additional tacit responsibility of tracking user accountability for user-generated data. For example, in cases where the data originator was no longer an employee, the administrators were forced to spend considerable time and effort determining the appropriate management personnel to assume ownership or disposition of the former owner's data files. In order to prevent this sort of problem from occurring and to have a defined procedure in the event of an anomaly, the computer account management procedure was thoroughly reengineered, as detailed in this document. An automated procedure is now in place that is initiated and supplied data by central corporate processes certifying the integrity, timeliness and authentication of account holders and their management. Automated scripts identify when an account is about to expire, to preempt the problem of data becoming ''orphaned'' without a responsible ''owner'' on the system. The automated account-management procedure currently operates on and provides a standard process for all of the computers maintained by the Scientific Computing Department.

More Details

Evaluation Techniques and Properties of an Exact Solution to a Subsonic Free Surface Jet Flow

Robinson, Allen C.

Computational techniques for the evaluation of steady plane subsonic flows represented by Chaplygin series in the hodograph plane are presented. These techniques are utilized to examine the properties of the free surface wall jet solution. This solution is a prototype for the shaped charge jet, a problem which is particularly difficult to compute properly using general purpose finite element or finite difference continuum mechanics codes. The shaped charge jet is a classic validation problem for models involving high explosives and material strength. Therefore, the problem studied in this report represents a useful verification problem associated with shaped charge jet modeling.

More Details
Results 90051–90075 of 99,299
Results 90051–90075 of 99,299