This report details the modeling results for the response of a finite-length dissipative conductor interacting with a conducting ground to a hypothetical nuclear device with the same output energy spectrum as the Fat Man device. We use a time-domain method based on transmission line theory that allows accounting for time-varying air conductivities. We implemented such method in a code we call ATLOG - Analytic Transmission Line Over Ground. Results are compared the frequency-domain version of ATLOG previously developed and to the circuit simulator Xyce in some instances. Intentionally Left Blank
This report details the modeling results for the response of a finite-length dissipative conductor interacting with a conducting ground to the Bell Labs electromagnetic pulse excitation. We use both a frequency-domain and a time-domain method based on transmission line theory through a code we call ATLOG - Analytic Transmission Line Over Ground. Results are compared to the circuit simulator Xyce for selected cases. Intentionally Left Blank
This report details the comparison of ATLOG modeling results for the response of a finite-length dissipative aerial conductor interacting with a conducting ground to a measurement taken November 2016 at the High-Energy Radiation Megavolt Electron Source (HERMES) facility. We use the ATLOG time-domain method based on transmission line theory. Good agreement is observed between simulations and experiments. Intentionally Left Blank
We demonstrate the active tuning of all-dielectric metasurfaces exhibiting high-quality factor (high-Q) resonances. The active control is provided by embedding the asymmetric silicon meta-atoms with liquid crystals, which allows the relative index of refraction to be controlled through heating. It is found that high quality factor resonances (Q = 270 ± 30) can be tuned over more than three resonance widths. Our results demonstrate the feasibility of using all-dielectric metasurfaces to construct tunable narrow-band filters.
Dielectric metasurfaces that exploit the different Mie resonances of nanoscale dielectric resonators are a powerful platform for manipulating electromagnetic fields and can provide novel optical behavior. In this work, we experimentally demonstrate independent tuning of the magnetic dipole resonances relative to the electric dipole resonances of split dielectric resonators (SDRs). By increasing the split dimension, we observe a blue shift of the magnetic dipole resonance toward the electric dipole resonance. Therefore, SDRs provide the ability to directly control the interaction between the two dipole resonances within the same resonator. For example, we achieve the first Kerker condition by spectrally overlapping the electric and magnetic dipole resonances and observe significantly suppressed backward scattering. Moreover, we show that a single SDR can be used as an optical nanoantenna that provides strong unidirectional emission from an electric dipole source.
Here, epsilon-near-zero materials provide a new path for tailoring light-matter interactions at the nanoscale. In this paper, we analyze a compact electroabsorption modulator based on epsilon-near-zero confinement in transparent conducting oxide films. The non-resonant modulator operates through field-effect carrier density tuning. We compare the performance of modulators composed of two different conducting oxides, namely indium oxide (In2O3) and cadmium oxide (CdO), and show that better modulation performance is achieved when using high-mobility (i.e. low-loss) epsilon-near-zero materials such as CdO. In particular, we show that non-resonant electroabsorption modulators with sub-micron lengths and greater than 5 dB extinction ratios may be achieved through the proper selection of high-mobility transparent conducting oxides, opening a path for device miniaturization and increased modulation depth.
Ultrafast control of the polarization state of light may enable a plethora of applications in optics, chemistry and biology. However, conventional polarizing elements, such as polarizers and waveplates, are either static or possess only gigahertz switching speeds. Here, with the aid of high-mobility indium-doped cadmium oxide (CdO) as the gateway plasmonic material, we realize a high-quality factor Berreman-type perfect absorber at a wavelength of 2.08 μm. On sub-bandgap optical pumping, the perfect absorption resonance strongly redshifts because of the transient increase of the ensemble-averaged effective electron mass of CdO, which leads to an absolute change in the p-polarized reflectance from 1.0 to 86.3%. By combining the exceedingly high modulation depth with the polarization selectivity of the perfect absorber, we experimentally demonstrate a reflective polarizer with a polarization extinction ratio of 91 that can be switched on and off within 800 fs.
The goal of this paper is to investigate full-wave simulations of realistic implementations of multifunctional nanoantenna enabled detectors (NEDs). We realize a 2×2 pixelated array structure that supports two wavelengths of operation. After designing each resonating structure independently using full-wave simulations with periodic boundary conditions mimicking the whole infinite array, we construct a supercell made of a 2×2 pixelated array with periodic boundary conditions mimicking the full NED. In the NED, each pixel comprises 10-20 nanoantennas. Our simulations account for the cross-talk between contiguous pixels. We observe that, even though there are finite extent effects, the pixels work as designed, each responding at the respective wavelength of operation. We want to stress that realistic simulations of multifunctional NEDs need to be performed to verify the design functionality by taking into account finite extent and cross-talk effects.
This report details the effect of antenna loading on the interior near - field response of a resonating cylindrical cavity characterized by a leaky aperture. We find a large field variation within the cavity when a long antenna is introduced within the interior and the antenna load is varied from 0 to 50 Ohms. We also find the effect of absorption losses to be negligible. In order to accurately characterize the coupling into the cavity, a non - perturbing sensor (such as a monopole) is recommended. With this approach, the interior field distribution and peak levels characterizing the cavity will be fairly well preserved. In addition to studying the impact of antenna loading on the interior near - field response, the resonant frequencies for the cylindrical structure perturbed by a subwavelength aperture are found to be well estimated by analytical computations.
Three-dimensional (3D) metafilms composed of periodic arrays of silicon unit cells containing single and multiple micrometer-scale vertical split ring resonators (SRRs) per unit cell were fabricated. In contrast to planar and stacked planar structures, these 3D metafilms have a thickness t ∼ λd/4, allowing for classical thin film effects in the long wavelength limit. The infrared specular far-field scattering response was measured for metafilms containing one and two resonators per unit cell and compared to numerical simulations. Excellent agreement in the frequency region below the onset of diffractive scattering was obtained. For dense arrays of unit cells containing single SRRs, normally incident linearly polarized plane waves which do not excite a resonant response result in thin film interference fringes in the reflected spectra and are virtually indistinguishable from the scattering response of an undecorated array of unit cells. For the resonant linear polarization, the specular reflection for arrays is highly dependent on the SRR orientation on the vertical face for gap-up, gap-down, and gap-right orientations. For dense arrays of unit cells containing two SRRs per unit cell positioned on adjacent faces, the specular reflection spectra are slightly modified due to near-field coupling between the orthogonally oriented SRRs but otherwise exhibit reflection spectra largely representative of the corresponding single-SRR unit cell structures. The ability to pack the unit cell with multiple inclusions which can be independently excited by choice of incident polarization suggests the construction of dual-channel films where the scattering response is selected by altering the incident polarization.