Fiber-optic sensors for sensing electrical current are attractive due to their inherent immunity to electromagnetic interference. Several groups have shown the use of Faraday rotation in magneto-optical materials as a function of current-induced magnetic field. In this work, fiber-optic sensors based on different mechanisms such as magnetic-fielddependent polarization coherence and power scattering effects in magneto-optical materials are demonstrated. These novel sensor configurations can have advantages in that they exhibit power-independent or polarization-independent operation which can ultimately lead to fewer components and relaxed light source requirements compared to fiber-optic current sensor systems based on Faraday rotation.
Application of the World Wide Web (WWW) for the transfer of sensor data from remote locations to laboratories and offices is a largely ignored application of the WWW. We have investigated several architectures for this application including simple web server/client architectures and variations of this approach. In addition, we have evaluated several commercial approaches and other techniques that have been investigated and are in the literature. Finally, we have provided conclusions based on the results of our study offering suggestions about the advantages and disadvantages of each of the approaches studied.
The design and performance of Love-wave sensors using cross-linked poly-(methyl methacrylate) waveguides of thickness of 0.3--3.2 {micro}m on LiTaO{sub 3} substrates are described. It is found that this layer-substrate combination provides sufficient waveguidance, and electrical isolation of the IDTs from the liquid environment to achieve low acoustic loss and distortion. In bio-sensing experiments, mass sensitivity up to 1,420 Hz/(ng/mm{sup 2}) is demonstrated.
We derive a lumped-element, equivalent-circuit model for the thickness shear mode (TSM) resonator with a viscoelastic film. This modified Butterworth-Van Dyke model includes in the motional branch a series LCR resonator, representing the quartz resonance, and a parallel LCR resonator, representing the film resonance. This model is valid in the vicinity of film resonance, which occurs when the acoustic phase shift across the film is an odd multiple of {pi}/2 radians. This model predicts accurately the frequency changes and damping that arise at resonance and is a reasonable approximation away from resonance. The elements of the model are explicitly related to film properties and can be interpreted in terms of elastic energy storage and viscous power dissipation. The model leads to a simple graphical interpretation of the coupling between the quartz and film resonances and facilitates understanding of the resulting responses. These responses are compared with predictions from the transmission-line and the Sauerbrey models.
Chemically sensitive polymers coated on delay lines utilizing shear horizontal surface acoustic wave (SH-SAW) sensors are investigated for the detection of organic analytes in liquid environments. The SH-SAW sensor platform was designed and fabricated on 36{degree} rotated Y-cut LiTaO{sub 3}. By depositing a SiO{sub 2} dielectric layer over the entire device prior to applying the polymer film, partial electrical passivation of the interdigital transducers (IDT) is obtained while increasing the mass sensitivity of the device. Changes in the mechanical properties of the chemically sensitive polymer materials were clearly detectable through a frequency shift at least one order of magnitude larger than that of a coated-quartz crystal resonator (QCR) in a similar experiment.
A new equivalent-circuit model for the thickness shear mode resonator with a surface viscoelastic layer will be described. This model is valid only in the vicinity of a film resonance but is a reasonable approximation away from resonance. A simple resonant parallel circuit containing a resistor, a capacitor, and an inductor represents the electrical impedance of the film. These elements describe the film's viscous power dissipation, elastic energy storage, and kinetic energy storage, respectively. Resonator response comparisons between this lumped- element model and the general transmission-line model show good agreement over a range of film phase conditions and not just near film resonance. Under certain conditions, it will be shown that two peaks in the admittance magnitude are observed for operation at film resonance.
This paper discusses a new technique for measuring the impedance response of thickness shear mode (TSM) resonators used as fluid monitors and chemical sensors. The technique simulates the swept frequency measurements performed by an automatic network analyzer (ANA), determining the complex reflection scattering parameter, S1l, from single port devices. Unlike oscillator circuits most often used with TSM resonators, narrowband spectral measurements are not limited by cable capacitance between resonator and oscillator allowing placement of the sensor in severe environments. Only noise produced by long cable lengths limits performance and sensor sensitivity. This new technique utilizes a simple swept frequency source operating near the crystal resonance, a unique directional coupler to provide the reference and reflected RF signals, an I & Q demodulation circuit that returns two dc voltages, and computational algorithms for determining sensor response parameters. Performance, has been evaluated by comparing TSM resonator responses using this new technique to those from a commercial ANA.
The authors developed a general model that describes the electrical responses of thickness shear mode resonators subject to a variety of surface conditions. The model incorporates a physically diverse set of single component loadings, including rigid solids, viscoelastic media, and fluids (Newtonian or Maxwellian). The model allows any number of these components to be combined in any configuration. Such multiple loadings are representative of a variety of physical situations encountered in electrochemical and other liquid phase applications, as well as gas phase applications. In the general case, the response of the composite load is not a linear combination of the individual component responses. The authors discuss application of the model in a qualitative diagnostic fashion to gain insight into the nature of the interfacial structure, and in a quantitative fashion to extract appropriate physical parameters such as liquid viscosity and density, and polymer shear moduli.
Under Sandia`s Laboratory Directed Research and Development (LDRD) program, novel acoustic wave-based sensors were explored for detecting gaseous chemical species in vehicle exhaust streams. The need exists for on-line, real-time monitors to continuously analyze the toxic exhaust gases -- nitrogen oxides (NOx), carbon monoxide (CO), and hydrocarbons (HC) -- for determining catalytic converter efficiency, documenting compliance to emission regulations, and optimizing engine performance through feedback control. In this project, the authors adapted existing acoustic wave chemical sensor technology to the high temperature environment and investigated new robust sensor materials for improving gas detection sensitivity and selectivity. This report describes one new sensor that has potential use as an exhaust stream residual hydrocarbon monitor. The sensor consists of a thickness shear mode (TSM) quartz resonator coated with a thin mesoporous silica layer ion-exchanged with palladium ions. When operated at temperatures above 300 C, the high surface area film catalyzes the combustion of the hydrocarbon vapors in the presence of oxygen. The sensor acts as a calorimeter as the exothermic reaction slightly increases the temperature, stressing the sensor surface, and producing a measurable deviation in the resonator frequency. Sensitivities as high as 0.44 (ppm-{Delta}f) and (ppm-gas) have been measured for propylene gas, with minimum detectable signals of < 50 ppm of propylene at 500 C.
Thickness shear mode (TSM) quartz resonators operating in a new {open_quotes}Lever oscillator{close_quotes} circuit are used as monitors for critical automotive fluids. These monitors respond to the density and viscosity of liquids contacting the quartz surface. Sensors have been developed for determining the viscosity characteristics of engine lubricating oil, the state-of-charge of lead-acid storage batteries, and the concentration variations in engine coolant.
This study investigates the high frequency response of Faraday effect optical fiber current sensors that are bandwidth-limited by the transit time of the light in the fiber. Mathematical models were developed for several configurations of planar (collocated turns) and travelling wave (helical turns) singlemode fiber sensor coils, and experimental measurements verified the model predictions. High frequency operation above 500 MHz, with good sensitivity, was demonstrated for several current sensors; this frequency region was not previously considered accessible by fiber devices. Planar fiber coils in three configurations were investigated: circular cross section with the conductor centered coaxially; circular cross section with the conductor noncentered; and noncircular cross section with arbitrary location of the conductor. The helical travelling wave fiber coils were immersed in the dielectric of a coaxial transmission line to improve velocity phase matching between the field and light. Three liquids (propanol, methanol, and water) and air were used as transmission line dielectric. Complete models, which must account for liquid dispersion and waveguide dispersion from the multilayer dielectric in the transmission line, were developed to describe the Faraday response of the travelling wave sensors. Other travelling wave current sensors with potentially greater Faraday sensitivity, wider bandwidth and smaller size are investigated using the theoretical models developed for the singlemode fibers coils.
We have demonstrated that a thickness shear mode quartz resonator can be used as a real-time, in situ monitor of the state-of-charge of lead-acid batteries. The resonator is sensitive to hanges in the density and viscosity of the sulfuric acid electrolyte. Both of these liquid parameters vary monotonically with the battery state-of-charge. This new monitor is more precise than sampling hydrometers, and since it is compatible with the Corrosive electrolyte environment, it can be used for in situ monitoring. A TSM resonator consists of gold electrodes deposited on opposite surfaces of a thin AT-cut quartz crystal. When an RF voltage is applied to the electrodes, a shear strain is introduced in the piezoelectric quartz and mechanical resonance occurs between the surfaces. A liquid in contact with one of the quartz surfaces is viscously entrained, which perturbs the resonant frequency and resonance magnitude. If the surface is smooth, the changes in both frequency and magnitude are proportional to ({rho}{eta}) {sup {1/2}}, where {rho} is the liquid density and {eta} is the viscosity.
The frequency response of the Faraday rotation in fiber current sensors is computed and measured for sensor coils of noncircular cross section and with displaced coil and conductor axes. Resonances are observed at higher frequencies with magnitudes approaching that of the low frequency response. Narrowband current sensors at frequencies above 100 MHz are reported.
Coaxial transmission cells have been developed for testing optical fiber current sensors. Three of these cells are airlines that provide transverse electromagnetic mode operation to 1.0, 2.3, and 13.7 GHz. Standing wave ratios are <1.5 for the unloaded airlines over their given frequency ranges. Solid and liquid dielectric coaxial cells use materials with high relative permittivities, >9.1. A ceramic test cell has a useful frequency range to 2.5 GHz; the liquid cells, filled with propanol, methanol, or water, are good to {approximately}500 MHz. The properties of the liquid cells are described using a model of a multilayer coaxial dielectric system with complex relative permittivities. 15 refs.
A travelling wave Faraday effect fiber current sensor, consisting of a helical optical fiber coil immersed in a dielectric medium, has been demonstrated. Improved phase matching conditions have led to measured bandwidth enhancements of greater than a factor of four. Sensitive devices with multi-gigahertz bandwidths are possible using this technique. 7 refs., 3 figs.