In this paper we extend the DGiT multirate framework, developed in Connors and Sockwell (2022) for scalar transmission problems, to a solid–solid interaction (SSI) problem involving two coupled elastic solids and a coupled air–sea model with the rotating, thermal shallow water equations. In so doing we aim to demonstrate the broad applicability of the mathematical theory and governing principles established in Connors and Sockwell (2022) to coupled problems characterized by subproblems evolving at different temporal scales. Multirate time integration algorithms employing different time steps, optimized for the dynamics of each subproblem, can significantly improve simulation efficiency for such coupled problems. However, development of multirate algorithms is a highly non-trivial task due to the coupling, which can impact accuracy, stability or other desired properties such as preservation of system invariants. DGiT provides a general template for multirate time integration that can achieve these properties. To elucidate the manner in which DGiT accomplishes this task, we fully detail each step in the application of the framework to the SSI and air–sea coupled problems. Numerical examples illustrate key properties of the resulting multirate schemes for both problems.
Approximating differential operators defined on two-dimensional surfaces is an important problem that arises in many areas of science and engineering. Over the past ten years, localized meshfree methods based on generalized moving least squares (GMLS) and radial basis function finite differences (RBF-FD) have been shown to be effective for this task as they can give high orders of accuracy at low computational cost, and they can be applied to surfaces defined only by point clouds. However, there have yet to be any studies that perform a direct comparison of these methods for approximating surface differential operators (SDOs). The first purpose of this work is to fill that gap. For this comparison, we focus on an RBF-FD method based on polyharmonic spline kernels and polynomials (PHS+Poly) since they are most closely related to the GMLS method. Additionally, we use a relatively new technique for approximating SDOs with RBF-FD called the tangent plane method since it is simpler than previous techniques and natural to use with PHS+Poly RBF-FD. The second purpose of this work is to relate the tangent plane formulation of SDOs to the local coordinate formulation used in GMLS and to show that they are equivalent when the tangent space to the surface is known exactly. The final purpose is to use ideas from the GMLS SDO formulation to derive a new RBF-FD method for approximating the tangent space for a point cloud surface when it is unknown. For the numerical comparisons of the methods, we examine their convergence rates for approximating the surface gradient, divergence, and Laplacian as the point clouds are refined for various parameter choices. We also compare their efficiency in terms of accuracy per computational cost, both when including and excluding setup costs.
A common approach for the development of partitioned schemes employing different time integrators on different subdomains is to lag the coupling terms in time. This can lead to accuracy issues, especially in multistage methods. In this article, we present a novel framework for partitioned heterogeneous time‐integration methods, which allows the coupling of arbitrary multistage and multistep methods without reducing their order of accuracy. At the core of our approach are accurate estimates of the interface flux obtained from the Schur complement of an auxiliary monolithic system . We use these estimates to construct a polynomial‐in‐time approximation of the interface flux over the current time coupling window. This approximation provides the interface boundary conditions necessary to decouple the subdomain problems at any point within the coupling window. In so doing our framework enables a flexible choice of time‐integrators for the individual subproblems without compromising the time‐accuracy at the coupled problem level. This feature is the main distinction between our framework and other approaches. To demonstrate the framework, we construct a family of partitioned heterogeneous time‐integration methods, combining multistage and multistep methods, for a simplified tracer transport component of the coupled air‐sea system in Earth system models. We report numerical tests evaluating accuracy and flux conservation for different pairs of time‐integrators from the explicit Runge‐Kutta and Adams‐Moulton families.
Earth and Space 2022: Space Exploration, Utilization, Engineering, and Construction in Extreme Environments - Selected Papers from the 18th Biennial International Conference on Engineering, Science, Construction, and Operations in Challenging Environments
Partitioned methods allow one to build a simulation capability for coupled problems by reusing existing single-component codes. In so doing, partitioned methods can shorten code development and validation times for multiphysics and multiscale applications. In this work, we consider a scenario in which one or more of the “codes” being coupled are projection-based reduced order models (ROMs), introduced to lower the computational cost associated with a particular component. We simulate this scenario by considering a model interface problem that is discretized independently on two non-overlapping subdomains. We then formulate a partitioned scheme for this problem that allows the coupling between a ROM “code” for one of the subdomains with a finite element model (FEM) or ROM “code” for the other subdomain. The ROM “codes” are constructed by performing proper orthogonal decomposition (POD) on a snapshot ensemble to obtain a low-dimensional reduced order basis, followed by a Galerkin projection onto this basis. The ROM and/or FEM “codes” on each subdomain are then coupled using a Lagrange multiplier representing the interface flux. To partition the resulting monolithic problem, we first eliminate the flux through a dual Schur complement. Application of an explicit time integration scheme to the transformed monolithic problem decouples the subdomain equations, allowing their independent solution for the next time step. We show numerical results that demonstrate the proposed method’s efficacy in achieving both ROM-FEM and ROM-ROM coupling.
Mahadevan, Vijay S.; Guerra, Jorge E.; Jiao, Xiangmin; Kuberry, Paul A.; Li, Yipeng; Ullrich, Paul; Marsico, David; Jacob, Robert; Bochev, Pavel B.; Jones, Philip
Strongly coupled nonlinear phenomena such as those described by Earth system models (ESMs) are composed of multiple component models with independent mesh topologies and scalable numerical solvers. A common operation in ESMs is to remap or interpolate component solution fields defined on their computational mesh to another mesh with a different combinatorial structure and decomposition, e.g., from the atmosphere to the ocean, during the temporal integration of the coupled system. Several remapping schemes are currently in use or available for ESMs. However, a unified approach to compare the properties of these different schemes has not been attempted previously. We present a rigorous methodology for the evaluation and intercomparison of remapping methods through an independently implemented suite of metrics that measure the ability of a method to adhere to constraints such as grid independence, monotonicity, global conservation, and local extrema or feature preservation. A comprehensive set of numerical evaluations is conducted based on a progression of scalar fields from idealized and smooth to more general climate data with strong discontinuities and strict bounds. We examine four remapping algorithms with distinct design approaches, namely ESMF Regrid , TempestRemap , generalized moving least squares (GMLS) with post-processing filters, and WLS-ENOR . By repeated iterative application of the high-order remapping methods to the test fields, we verify the accuracy of each scheme in terms of their observed convergence order for smooth data and determine the bounded error propagation using challenging, realistic field data on both uniform and regionally refined mesh cases. In addition to retaining high-order accuracy under idealized conditions, the methods also demonstrate robust remapping performance when dealing with non-smooth data. There is a failure to maintain monotonicity in the traditional L2-minimization approaches used in ESMF and TempestRemap, in contrast to stable recovery through nonlinear filters used in both meshless GMLS and hybrid mesh-based WLS-ENOR schemes. Local feature preservation analysis indicates that high-order methods perform better than low-order dissipative schemes for all test cases. The behavior of these remappers remains consistent when applied on regionally refined meshes, indicating mesh-invariant implementations. The MIRA intercomparison protocol proposed in this paper and the detailed comparison of the four algorithms demonstrate that the new schemes, namely GMLS and WLS-ENOR, are competitive compared to standard conservative minimization methods requiring computation of mesh intersections. The work presented in this paper provides a foundation that can be extended to include complex field definitions, realistic mesh topologies, and spectral element discretizations, thereby allowing for a more complete analysis of production-ready remapping packages.
We develop numerical methods for computing statistics of stochastic processes on surfaces of general shape with drift-diffusion dynamics dXt=a(Xt)dt+b(Xt)dWt. We formulate descriptions of Brownian motion and general drift-diffusion processes on surfaces. We consider statistics of the form u(x)=Ex[∫0τg(Xt)dt]+Ex[f(Xτ)] for a domain Ω and the exit stopping time τ=inft{t>0|Xt∉Ω}, where f,g are general smooth functions. For computing these statistics, we develop high-order Generalized Moving Least Squares (GMLS) solvers for associated surface PDE boundary-value problems based on Backward-Kolmogorov equations. We focus particularly on the mean First Passage Times (FPTs) given by the case f=0,g=1 where u(x)=Ex[τ]. We perform studies for a variety of shapes showing our methods converge with high-order accuracy both in capturing the geometry and the surface PDE solutions. We then perform studies showing how statistics are influenced by the surface geometry, drift dynamics, and spatially dependent diffusivities.