Publications

Results 101–110 of 110

Search results

Jump to search filters

Surface dynamics dominated by bulk thermal defects -- the case of NiAl (110)

Proposed for publication in Physical Review B.

Nobel, Jan A.; Bartelt, Norman C.

We find that small temperature changes cause steps on the NiAl(110) surface to move. We show that this step motion occurs because mass is transferred between the bulk and the surface as the concentration of bulk thermal defects (i.e., vacancies) changes with temperature. Since the change in an island's area with a temperature change is found to scale strictly with the island's step length, the thermally generated defects are created (annihilated) very near the surface steps. To quantify the bulk/surface exchange, we oscillate the sample temperature and measure the amplitude and phase lag of the system response, i.e., the change in an island's area normalized to its perimeter. Using a one-dimensional model of defect diffusion through the bulk in a direction perpendicular to the surface, we determine the migration and formation energies of the bulk thermal defects. During surface smoothing, we show that there is no flow of material between islands on the same terrace and that all islands in a stack shrink at the same rate. We conclude that smoothing occurs by mass transport through the bulk of the crystal rather than via surface diffusion. Based on the measured relative sizes of the activation energies for island decay, defect migration, and defect formation, we show that attachment/detachment at the steps is the rate-limiting step in smoothing.

More Details

Effects of elastic anisotropy on the periodicity and orientation of striped stress domain patterns at solid surfaces

Proposed for publication in Physical Review B.

Leonard, Francois L.; Bartelt, Norman C.; Kellogg, Gary L.

The length scale of stress domain patterns formed at solid surfaces is usually calculated using isotropic elasticity theory. Because this length depends exponentially on elastic constants; deviations between isotropic and anisotropic elasticity can lead to large errors. Another inaccuracy of isotropic elasticity theory is that it neglects the dependence of elastic relaxations on stripe orientation. To remove these inaccuracies; we calculate the energy of striped domain patterns using anisotropic elasticity theory for an extensive set of surfaces encountered in experimental studies of self-assembly. We present experimental and theoretical evidence that elastic anisotropy is large enough to determine the stripe orientation when Pb is deposited on Cu(111). Our analytical and numerical results should be useful for analysis of a broad range of experimental systems.

More Details

Relationship between domain boundary free energy and the temperature dependence of stress-domain patterns of Pb on Cu(111)

Proposed for publication in Physical Review B.

Bartelt, Norman C.; Feibelman, Peter J.; Leonard, Francois L.; Kellogg, Gary L.

Pb deposition on Cu(111) causes the surface to self-assemble into periodically arranged domains of a Pb-rich phase and a Pb-poor phase. Using low-energy electron microscopy (LEEM) we provide evidence that the observed temperature-dependent periodicity of these self-assembled domain patterns is the result of changing domain-boundary free energy. We determine the free energy of boundaries at different temperatures from a capillary wave analysis of the thermal fluctuations of the boundaries and find that it varies from 22 meV/nm at 600 K to 8 meV/nm at 650 K. Combining this result with previous measurements of the surface stress difference between the two phases we find that the theory of surface-stress-induced domain formation can quantitatively account for the observed periodicities.

More Details

Surface diffusion-limited island decay on Rh(001)

Proposed for publication in Surface Science.

Bartelt, Norman C.; Kellogg, Gary L.

We use low-energy electron microscopy to study the mechanisms of thermal smoothing on Rh(001) surfaces at high temperature. By examining the change of areas of two-dimensional islands as a function of time and temperature, we find that smoothing from 1210 K to 1450 K is limited by the rate of surface diffusion on terraces and not by bulk vacancy diffusion as observed in other systems in the same temperature range. However, the activation energy we measure for island decay is inconsistent with previous measurements and calculations of the activation energy of surface diffusion and the adatom formation energy. This inconsistency combined with an unexpectedly large activation entropy suggests a surface transport mechanism other than simple hopping of adatoms across the surface.

More Details

Thermal motion and energetics of self-assembled domain structures: Pb on Cu(111)

Physical Review Letters

Van Gastel, R.; Plass, R.; Bartelt, Norman C.; Kellogg, Gary L.

The energetics and thermal motion of the self-assembled domain structures of lead on copper were discussed. It was found that the self-assembled patterns arose from a temperature-independent surface stress difference of approximately 1.2 N/m. The domain patterns evolved in a manner consistent with models, when the lead coverage was increased.

More Details

Diffusion Kinetics in the Pd/Cu(001) Surface Alloy

Physical Review Letters

Swartzentruber, Brian S.; Bartelt, Norman C.

We use atom-tracking scanning tunneling microscopy to study the diffusion of Pd in the Pd/Cu(001) surface alloy. By following the motion of individual Pd atoms incorporated in the surface, we show that Pd diffuses by a vacancy-exchange, mechanism. We measure an effective activation energy for the diffusion of incorporated Pd atoms of 0.88 eV, which is consistent with an ab initio calculated barrier of 0.94 eV.

More Details
Results 101–110 of 110
Results 101–110 of 110