Publications

5 Results

Search results

Jump to search filters

Development and Characterization of a Sustainable Bio-Polymer Concrete with a Low Carbon Footprint

Polymers

Abdellatef, Mohammed I.M.; Murcia, Daniel H.; Al Shanti, Siham; Hamidi, Fatemeh; Rimsza, Jessica R.; Yoon, Hongkyu Y.; Gunawan, Budi G.; Taha, Mahmoud R.

Polymer concrete (PC) has been used to replace cement concrete when harsh service conditions exist. Polymers have a high carbon footprint when considering their life cycle analysis, and with increased climate change concerns and the need to reduce greenhouse gas emission, bio-based polymers could be used as a sustainable alternative binder to produce PC. This paper examines the development and characterization of a novel bio-polymer concrete (BPC) using bio-based polyurethane used as the binder in lieu of cement, modified with benzoic acid and carboxyl-functionalized multi-walled carbon nanotubes (MWCNTs). The mechanical performance, durability, microstructure, and chemical properties of BPC are investigated. Moreover, the effect of the addition of benzoic acid and MWCNTs on the properties of BPC is studied. The new BPC shows relatively low density, appreciable compressive strength between 20–30 MPa, good tensile strength of 4 MPa, and excellent durability resistance against aggressive environments. The new BPC has a low carbon footprint, 50% lower than ordinary Portland cement concrete, and can provide a sustainable concrete alternative in infrastructural applications.

More Details

Biopolymer Concrete

Abdellatef, Mohammed I.M.; Ho, Clifford K.; Kobos, Peter H.; Gunawan, Budi G.; Rimsza, Jessica R.; Yoon, Hongkyu Y.; Taha, Mahmoud M.R.

Cement production for concrete has been responsible for ~7–8% of global greenhouse gas (GHG) emissions, and nearly equally contribution for steel production processes (EPA, 2020). In order to achieve carbon neutrality by 2050, a novel solution has to be investigated. This project aims to develop fundamental mechanistic understanding and experimental characterization to create a 3D printable biopolymer concrete using plant-based polyurethane as an innovative and sustainable alternative for Portland cement concrete, with significantly low carbon footprint. Future construction will utilize the advances in digital additive manufacturing (3D printing) to produce optimal geometries with a minimum waste of materials. Understanding the polymerization process, factors impacting the composite rheology, and the structural behavior of this biopolymer concrete will enable us to engineer the next generation of concrete structures with low carbon footprint. This project aims to improve the nation’s ability to control Greenhouse Gas emission neutrality for the set goal of 2050 via introducing a structurally viable bio-based polymer concrete.

More Details
5 Results
5 Results