Publications

Results 26–28 of 28

Search results

Jump to search filters

Twenty years of service at NBNM - Analysis of Spectrolab module

Quintana, Michael A.; King, David L.; Kratochvil, Jay A.

This study of adhesional strength and surface analysis of encapsulant and silicon cell samples from a Natural Bridges National Monument (NBNM) Spectrolab module is an attempt to understand from its success. The module was fabricated using polyvinyl butyral (PVB) as an encapsulant. The average adhesional shear strength of the encapsulant at the cell/encapsulant interface in this module was 4.51 MPa or {approximately} 18% lower than that in currently manufactured modules. Typical encapsulant surface composition was as follows: C 75.0 at.% O 23.2 at.%, and Si 1.6 at.%, with Ag {approximately}0.2 at.% and Pb {approximately} 0.5 at.% with some tin respectively over the grid lines and solder bond. Representative silicon cell surface composition was: K 1.4 at.%, C 20.8 at.%, Sn 0.94 at.%, O 15.1 at.%, Na 2.7 at.% and Si 59.0 at.%. The presence of tin detected on the silicon cell surface may be attributed to corrosion of solder bond. The module differs from typical contemporary modules in the use of PVB, metallic mesh type interconnection, and silicon oxide AR coating.

More Details

Module 30 year life: What does it mean and is it predictable-achievable?

King, David L.; Quintana, Michael A.

The authors define what they mean by a 30-year module life and the testing protocol that they believe is involved in achieving such a prediction. However, they do not believe that a universal test (or series of tests) will allow for such a prediction to be made. They can test for a lot of things, but they believe it is impossible to provide a 30-year certification for any PV module submitted for test. They explain their belief in this paper.

More Details

Diagnostic analysis of silicon photovoltaic modules after 20-year field exposure

Conference Record of the IEEE Photovoltaic Specialists Conference

Quintana, Michael A.; King, David L.; Hosking, F.M.; Kratochvil, Jay A.; Johnson, Richard W.; Hansen, Barry R.

The objective of this study was to investigate the technology used by Spectrolab Inc. to manufacture photovoltaic modules that have provided twenty years of reliable service at Natural Bridges National Monument in southeastern Utah. A field survey, system performance tests, and a series of module and materials tests have confirmed the durability of the modules in the array. The combination of manufacturing processes, materials, and quality controls used by Spectrolab resulted in modules that have maintained a performance level close to the original specifications for twenty years. Specific contributors to the durability of the modules included polyinyl-butyral (PVB) encapsulant, expanded metal interconnects, silicon oxide anti-reflective coating, and excellent solder/substrate solderability.

More Details
Results 26–28 of 28
Results 26–28 of 28