Publications

Results 26–50 of 225

Search results

Jump to search filters

How sheath properties change with gas pressure: modeling and simulation

Plasma Sources Science and Technology

Beving, Lucas P.; Hopkins, Matthew M.; Baalrud, Scott D.

Particle-in-cell simulations are used to study how neutral pressure influences plasma properties at the sheath edge. The high rate of ion–neutral collisions at pressures above several mTorr are found to cause a decrease in the ion velocity at the sheath edge (collisional Bohm criterion), a decrease in the edge-to-center density ratio (hl factor), and an increase in the sheath width and sheath potential drop. A comparison with existing analytic models generally indicates favorable agreement, but with some distinctions. One is that models for the hl factor need to be made consistent with the collisional Bohm criterion. With this and similar corrections, a comprehensive fluid-based model of the plasma boundary transition is constructed that compares well with the simulation results.

More Details

Atomic step disorder on polycrystalline surfaces leads to spatially inhomogeneous work functions

Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films

Bussmann, Ezra; Smith, Sean W.; Scrymgeour, David; Brumbach, Michael T.; Lu, Ping; Dickens, Sara M.; Michael, Joseph R.; Ohta, Taisuke; Hjalmarson, Harold P.; Schultz, Peter A.; Clem, Paul; Hopkins, Matthew M.; Moore, Christopher

Structural disorder causes materials' surface electronic properties, e.g., work function (φ), to vary spatially, yet it is challenging to prove exact causal relationships to underlying ensemble disorder, e.g., roughness or granularity. For polycrystalline Pt, nanoscale resolution photoemission threshold mapping reveals a spatially varying φ = 5.70 ± 0.03 eV over a distribution of (111) vicinal grain surfaces prepared by sputter deposition and annealing. With regard to field emission and related phenomena, e.g., vacuum arc initiation, a salient feature of the φ distribution is that it is skewed with a long tail to values down to 5.4 eV, i.e., far below the mean, which is exponentially impactful to field emission via the Fowler-Nordheim relation. We show that the φ spatial variation and distribution can be explained by ensemble variations of granular tilts and surface slopes via a Smoluchowski smoothing model wherein local φ variations result from spatially varying densities of electric dipole moments, intrinsic to atomic steps, that locally modify φ. Atomic step-terrace structure is confirmed with scanning tunneling microscopy (STM) at several locations on our surfaces, and prior works showed STM evidence for atomic step dipoles at various metal surfaces. From our model, we find an atomic step edge dipole μ = 0.12 D/edge atom, which is comparable to values reported in studies that utilized other methods and materials. Our results elucidate a connection between macroscopic φ and the nanostructure that may contribute to the spread of reported φ for Pt and other surfaces and may be useful toward more complete descriptions of polycrystalline metals in the models of field emission and other related vacuum electronics phenomena, e.g., arc initiation.

More Details

High-Fidelity Particle-in-Cell Simulations of Thermionic Converters

2022 23rd International Vacuum Electronics Conference, IVEC 2022

Scherpelz, Peter; Groenewald, Roelof E.; Zhu, Kevin; Kieburtz, Michael; Ruof, Nicholas; Miller, Phill; Lietz, Amanda M.; Hopkins, Matthew M.

Plasma-based thermionic energy converters (TECs) feature non-equilibrium processes that are best modeled using fully kinetic simulations, and pose challenges in terms of length scales, time scales, and complex particle interactions. We present simulations of TECs using two particle-in-cell software packages which use modern high-performance computing to meet the simulation challenges. Using WarpX, we demonstrate the simulation of a triode plasma TEC. Using Aleph, we present simulations of an ignited cesium plasma TEC, including a large set of multi-step ionization processes. The Cs plasma simulations also demonstrate shortcomings of approximate models used historically.

More Details

Simulations of ion heating due to ion-acoustic instabilities in presheaths

Physics of Plasmas

Beving, Lucas P.; Hopkins, Matthew M.; Baalrud, Scott D.

Particle-in-cell, direct simulation Monte Carlo simulations reveal that ion-acoustic instabilities excited in presheaths can cause significant ion heating. Ion-acoustic instabilities are excited by the ion flow toward a sheath when the neutral gas pressure is small enough and the electron temperature is large enough. A series of 1D simulations were conducted in which neutral plasma (electrons and ions) was uniformly sourced with an ion temperature of 0.026 eV and different electron temperatures (0.1 eV-50 eV). Ion heating was observed when the electron-to-ion temperature ratio exceeded the minimum value predicted by linear response theory to excite ion-acoustic instabilities at the sheath edge (T e / T i ≈ 28). When this threshold was exceeded, the temperature equilibration rate between ions and electrons rapidly increased near the sheath so that the local temperature ratio did not significantly exceed the threshold for instability. This resulted in significant ion heating near the sheath edge, which also extended back into the bulk plasma; presumably due to wave reflection from the sheath. This ion-acoustic wave heating mechanism was found to decrease for higher neutral pressures, where ion-neutral collisions damp the ion-acoustic waves and ion heating is instead dominated by inelastic collisions in the presheath.

More Details
Results 26–50 of 225
Results 26–50 of 225