A UNIFIED DATA-DRIVEN framework for NONLOCAL OPERATORS: from local to nonlocal to fractional
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
We provide a Helmholtz decomposition in the nonlocal setting.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
SIAM/ASA Journal on Uncertainty Quantification
Previous work has demonstrated that propagating groups of samples, called ensembles, together through forward simulations can dramatically reduce the aggregate cost of sampling-based uncertainty propagation methods [E. Phipps, M. D'Elia, H. C. Edwards, M. Hoemmen, J. Hu, and S. Rajamanickam, SIAM J. Sci. Comput., 39 (2017), pp. C162--C193]. However, critical to the success of this approach when applied to challenging problems of scientific interest is the grouping of samples into ensembles to minimize the total computational work. For example, the total number of linear solver iterations for ensemble systems may be strongly influenced by which samples form the ensemble when applying iterative linear solvers to parameterized and stochastic linear systems. In this paper we explore sample grouping strategies for local adaptive stochastic collocation methods applied to PDEs with uncertain input data, in particular canonical anisotropic diffusion problems where the diffusion coefficient is modeled by truncated Karhunen--Loève expansions. Finally, we demonstrate that a measure of the total anisotropy of the diffusion coefficient is a good surrogate for the number of linear solver iterations for each sample and therefore provides a simple and effective metric for grouping samples.
Abstract not provided.
Computational Methods in Applied Mathematics
In this paper, a nonlocal convection-diffusion model is introduced for the master equation of Markov jump processes in bounded domains. With minimal assumptions on the model parameters, the nonlocal steady and unsteady state master equations are shown to be well-posed in a weak sense. Finally, then the nonlocal operator is shown to be the generator of finite-range nonsymmetric jump processes and, when certain conditions on the model parameters hold, the generators of finite and infinite activity Lévy and Lévy-type jump processes are shown to be special instances of the nonlocal operator.
Abstract not provided.
SIAM/ASA Journal of Uncertainty Quantification
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.