Publications

Results 126–148 of 148

Search results

Jump to search filters

Effects of Transcranial Direct Current Stimulation (tDCS) on Human Memory

Matzen, Laura E.; Trumbo, Michael C.

Training a person in a new knowledge base or skill set is extremely time consuming and costly, particularly in highly specialized domains such as the military and the intelligence community. Recent research in cognitive neuroscience has suggested that a technique called transcranial direct current stimulation (tDCS) has the potential to revolutionize training by enabling learners to acquire new skills faster, more efficiently, and more robustly (Bullard et al., 2011). In this project, we tested the effects of tDCS on two types of memory performance that are critical for learning new skills: associative memory and working memory. Associative memory is memory for the relationship between two items or events. It forms the foundation of all episodic memories, so enhancing associative memory could provide substantial benefits to the speed and robustness of learning new information. We tested the effects of tDCS on associative memory, using a real-world associative memory task: remembering the links between faces and names. Working memory refers to the amount of information that can be held in mind and processed at one time, and it forms the basis for all higher-level cognitive processing. We investigated the degree of transfer between various working memory tasks (the N-back task as a measure of verbal working memory, the rotation-span task as a measure of visuospatial working memory, and Raven's progressive matrices as a measure of fluid intelligence) in order to determine if tDCS-induced facilitation of performance is task-specific or general.

More Details

Frequency-Dependent Enhancement of Fluid Intelligence Induced by Transcranial Oscillatory Potentials

Current Biology

Matzen, Laura E.

Everyday problem solving requires the ability to go beyond experience by efficiently encoding and manipulating new information, i.e., fluid intelligence (Gf) [1]. Performance in tasks involving Gf, such as logical and abstract reasoning, has been shown to rely on distributed neural networks, with a crucial role played by prefrontal regions [2]. Synchronization of neuronal activity in the gamma band is a ubiquitous phenomenon within the brain; however, no evidence of its causal involvement in cognition exists to date [3]. Here, we show an enhancement of Gf ability in a cognitive task induced by exogenous rhythmic stimulation within the gamma band. Imperceptible alternating current [4] delivered through the scalp over the left middle frontal gyrus resulted in a frequency-specific shortening of the time required to find the correct solution in a visuospatial abstract reasoning task classically employed to measure Gf abilities (i.e., Raven’s matrices) [5]. Crucially, gamma-band stimulation (γ-tACS) selectively enhanced performance only on more complex trials involving conditional/logical reasoning. The finding presented here supports a direct involvement of gamma oscillatory activity in the mechanisms underlying higher-order human cognition.

More Details

Using computational modeling to assess use of cognitive strategies

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Haass, Michael J.; Matzen, Laura E.

Although there are many strategies and techniques that can improve memory, cognitive biases generally lead people to choose suboptimal memory strategies. In this study, participants were asked to memorize words while their brain activity was recorded using electroencephalography (EEG). The participants' memory performance and EEG data revealed that a self-testing (retrieval practice) strategy could improve memory. The majority of the participants did not use self-testing, but computational modeling revealed that a subset of the participants had brain activity that was consistent with this optimal strategy. We developed a model that characterized the brain activity associated with passive study and with explicit memory testing. We used that model to predict which participants adopted a self-testing strategy, and then evaluated the behavioral performance of those participants. This analysis revealed that, as predicted, the participants whose brain activity was consistent with a self-testing strategy had better memory performance at test. © 2011 Springer-Verlag.

More Details

Cultural neuroscience and individual differences: Implications for augmented cognition

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Matzen, Laura E.

Technologies that augment human cognition have the potential to enhance human performance in a wide variety of domains. However, there are a number of individual differences in brain activity that must be taken into account during the development, validation, and application of augmented cognition tools. A growing body of research in cultural neuroscience has shown that there are substantial differences in how people from different cultural backgrounds approach various cognitive tasks. In addition, there are many other types of individual differences and even changes in a single individual over time that have implications for augmented cognition research and development. The aim of this session is to highlight a few of those differences and to discuss how they might impact augmented cognition technologies. © 2011 Springer-Verlag.

More Details

Recommendations for reducing ambiguity in written procedures

Matzen, Laura E.

Previous studies in the nuclear weapons complex have shown that ambiguous work instructions (WIs) and operating procedures (OPs) can lead to human error, which is a major cause for concern. This report outlines some of the sources of ambiguity in written English and describes three recommendations for reducing ambiguity in WIs and OPs. The recommendations are based on commonly used research techniques in the fields of linguistics and cognitive psychology. The first recommendation is to gather empirical data that can be used to improve the recommended word lists that are provided to technical writers. The second recommendation is to have a review in which new WIs and OPs and checked for ambiguities and clarity. The third recommendation is to use self-paced reading time studies to identify any remaining ambiguities before the new WIs and OPs are put into use. If these three steps are followed for new WIs and OPs, the likelihood of human errors related to ambiguity could be greatly reduced.

More Details

A study of potential sources of linguistic ambiguity in written work instructions

Matzen, Laura E.

This report describes the results of a small experimental study that investigated potential sources of ambiguity in written work instructions (WIs). The English language can be highly ambiguous because words with different meanings can share the same spelling. Previous studies in the nuclear weapons complex have shown that ambiguous WIs can lead to human error, which is a major cause for concern. To study possible sources of ambiguity in WIs, we determined which of the recommended action verbs in the DOE and BWXT writer's manuals have numerous meanings to their intended audience, making them potentially ambiguous. We used cognitive psychology techniques to conduct a survey in which technicians who use WIs in their jobs indicated the first meaning that came to mind for each of the words. Although the findings of this study are limited by the small number of respondents, we identified words that had many different meanings even within this limited sample. WI writers should pay particular attention to these words and to their most frequent meanings so that they can avoid ambiguity in their writing.

More Details
Results 126–148 of 148
Results 126–148 of 148