Human Performance Testing on Observation Capture Methods for International Nuclear Safeguards Inspections: Transferring Knowledge from the Field to Headquarters and Back
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Transactions on Visualization and Computer Graphics
Recently, an approach for determining the value of a visualization was proposed, one moving beyond simple measurements of task accuracy and speed. The value equation contains components for the time savings a visualization provides, the insights and insightful questions it spurs, the overall essence of the data it conveys, and the confidence about the data and its domain it inspires. This articulation of value is purely descriptive, however, providing no actionable method of assessing a visualization's value. In this work, we create a heuristic-based evaluation methodology to accompany the value equation for assessing interactive visualizations. We refer to the methodology colloquially as ICE-T, based on an anagram of the four value components. Our approach breaks the four components down into guidelines, each of which is made up of a small set of low-level heuristics. Evaluators who have knowledge of visualization design principles then assess the visualization with respect to the heuristics. We conducted an initial trial of the methodology on three interactive visualizations of the same data set, each evaluated by 15 visualization experts. We found that the methodology showed promise, obtaining consistent ratings across the three visualizations and mirroring judgments of the utility of the visualizations by instructors of the course in which they were developed.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
International nuclear safeguards inspectors visit nuclear facilities to assess their compliance with international nonproliferation agreements. Inspectors note whether anything unusual is happening in the facility that might indicate the diversion or misuse of nuclear materials, or anything that changed since the last inspection. They must complete inspections under restrictions imposed by their hosts, regarding both their use of technology or equipment and time allotted. Moreover, because inspections are sometimes completed by different teams months apart, it is crucial that their notes accurately facilitate change detection across a delay. The current study addressed these issues by investigating how note-taking methods (e.g., digital camera, hand-written notes, or their combination) impacted memory in a delayed recall test of a complex visual array. Participants studied four arrays of abstract shapes and industrial objects using a different note-taking method for each, then returned 48–72Â h later to complete a memory test using their notes to identify objects changed (e.g., location, material, orientation). Accuracy was highest for both conditions using a camera, followed by hand-written notes alone, and all were better than having no aid. Although the camera-only condition benefitted study times, this benefit was not observed at test, suggesting drawbacks to using just a camera to aid recall. Change type interacted with note-taking method; although certain changes were overall more difficult, the note-taking method used helped mitigate these deficits in performance. Finally, elaborative hand-written notes produced better performance than simple ones, suggesting strategies for individual note-takers to maximize their efficacy in the absence of a digital aid.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
International nuclear safeguards inspectors are tasked with verifying that nuclear materials in facilities around the world are not misused or diverted from peaceful purposes. They must conduct detailed inspections in complex, information-rich environments, but there has been relatively little research into the cognitive aspects of their jobs. We posit that the speed and accuracy of the inspectors can be supported and improved by designing the materials they take into the field such that the information is optimized to meet their cognitive needs. Many in-field inspection activities involve comparing inventory or shipping records to other records or to physical items inside of a nuclear facility. The organization and presentation of the records that the inspectors bring into the field with them could have a substantial impact on the ease or difficulty of these comparison tasks. In this paper, we present a series of mock inspection activities in which we manipulated the formatting of the inspectors’ records. We used behavioral and eye tracking metrics to assess the impact of the different types of formatting on the participants’ performance on the inspection tasks. The results of these experiments show that matching the presentation of the records to the cognitive demands of the task led to substantially faster task completion.
National security missions require understanding third-party software binaries, a key element of which is reasoning about how data flows through a program. However, vulnerability analysts protecting software lack adequate tools for understanding data flow in binaries. To reduce the human time burden for these analysts, we used human factors methods in a rolling discovery process to derive user-centric visual representation requirements. We encountered three main challenges: analysis projects span weeks, analysis goals significantly affect approaches and required knowledge, and analyst tools, techniques, conventions, and prioritization are based on personal preference. To address these challenges, we initially focused our human factors methods on an attack surface characterization task. We generalized our results using a two-stage modified sorting task, creating requirements for a data flow visualization. We implemented these requirements partially in manual static visualizations, which we informally evaluated, and partially in automatically generated interactive visualizations, which have yet to be integrated into workflows for evaluation. Our observations and results indicate that 1) this data flow visualization has the potential to enable novel code navigation, information presentation, and information sharing, and 2) it is an excellent time to pursue research applying human factors methods to binary analysis workflows.
This report describes a seedling project in which we developed experimental paradigms for studying patterns of analyst attention to streaming data. The project identified key structure features that can be used to generate appropriate stimuli for nearly any mission domain.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Transactions on Visualization and Computer Graphics
Evaluating the effectiveness of data visualizations is a challenging undertaking and often relies on one-off studies that test a visualization in the context of one specific task. Researchers across the fields of data science, visualization, and human-computer interaction are calling for foundational tools and principles that could be applied to assessing the effectiveness of data visualizations in a more rapid and generalizable manner. One possibility for such a tool is a model of visual saliency for data visualizations. Visual saliency models are typically based on the properties of the human visual cortex and predict which areas of a scene have visual features (e.g. color, luminance, edges) that are likely to draw a viewer's attention. While these models can accurately predict where viewers will look in a natural scene, they typically do not perform well for abstract data visualizations. In this paper, we discuss the reasons for the poor performance of existing saliency models when applied to data visualizations. We introduce the Data Visualization Saliency (DVS) model, a saliency model tailored to address some of these weaknesses, and we test the performance of the DVS model and existing saliency models by comparing the saliency maps produced by the models to eye tracking data obtained from human viewers. Finally, we describe how modified saliency models could be used as general tools for assessing the effectiveness of visualizations, including the strengths and weaknesses of this approach.
Abstract not provided.
Abstract not provided.
Neuropsychologia
Prior work demonstrates that application of transcranial direct current stimulation (tDCS) improves memory. In this study, we investigated tDCS effects on face-name associative memory using both recall and recognition tests. Participants encoded face-name pairs under either active (1.5 mA) or sham (.1 mA) stimulation applied to the scalp adjacent to the left dorsolateral prefrontal cortex (dlPFC), an area known to support associative memory. Participants’ memory was then tested after study (day one) and then again after a 24-h delay (day two), to assess both immediate and delayed stimulation effects on memory. Results indicated that active relative to sham stimulation led to substantially improved recall (more than 50%) at both day one and day two. Recognition memory performance did not differ between stimulation groups at either time point. These results suggest that stimulation at encoding improves memory performance by enhancing memory for details that enable a rich recollective experience, but that these improvements are evident only under some testing conditions, especially those that rely on recollection. Overall, stimulation of the dlPFC could have led to recall improvement through enhanced encoding from stimulation or from carryover effects of stimulation that influenced retrieval processes, or both.
With the rise of electronic and high-dimensional data, new and innovative feature detection and statistical methods are required to perform accurate and meaningful statistical analysis of these datasets that provide unique statistical challenges. In the area of feature detection, much of the recent feature detection research in the computer vision community has focused on deep learning methods, which require large amounts of labeled training data. However, in many application areas, training data is very limited and often difficult to obtain. We develop methods for fast, unsupervised, precise feature detection for video data based on optical flows, edge detection, and clustering methods. We also use pretrained neural networks and interpretable linear models to extract features using very limited training data. In the area of statistics, while high-dimensional data analysis has been a main focus of recent statistical methodological research, much focus has been on populations of high-dimensional vectors, rather than populations of high-dimensional tensors, which are three-dimensional arrays that can be used to model dependent images, such as images taken of the same person or ripped video frames. Our feature detection method is a non-model-based method that fusses information from dense optical flow, raw image pixels, and frame differences to generate detections. Our hypothesis testing methods are based on the assumption that dependent images are concatenated into a tensor that follows a tensor normal distribution, and from this assumption, we derive likelihood-ratio, score, and regression-based tests for one- and multiple-sample testing problems. Our methods will be illustrated on simulated and real datasets. We conclude this report with comments on the relationship between feature detection and hypothesis testing methods.
This project was inspired by two needs. The first is a need for tools to help scientists and engineers to design effective data visualizations for communicating information, whether to the user of a system, an analyst who must make decisions based on complex data, or in the context of a technical report or publication. Most scientists and engineers are not trained in visualization design, and they could benefit from simple metrics to assess how well their visualization's design conveys the intended message. In other words, will the most important information draw the viewer's attention? The second is the need for cognition-based metrics for evaluating new types of visualizations created by researchers in the information visualization and visual analytics communities. Evaluating visualizations is difficult even for experts. However, all visualization methods and techniques are intended to exploit the properties of the human visual system to convey information efficiently to a viewer. Thus, developing evaluation methods that are rooted in the scientific knowledge of the human visual system could be a useful approach. In this project, we conducted fundamental research on how humans make sense of abstract data visualizations, and how this process is influenced by their goals and prior experience. We then used that research to develop a new model, the Data Visualization Saliency Model, that can make accurate predictions about which features in an abstract visualization will draw a viewer's attention. The model is an evaluation tool that can address both of the needs described above, supporting both visualization research and Sandia mission needs.
IEEE Transactions on Visualization and Computer Graphics
Evaluating the effectiveness of data visualizations is a challenging undertaking and often relies on one-off studies that test a visualization in the context of one specific task. Researchers across the fields of data science, visualization, and human-computer interaction are calling for foundational tools and principles that could be applied to assessing the effectiveness of data visualizations in a more rapid and generalizable manner. One possibility for such a tool is a model of visual saliency for data visualizations. Visual saliency models are typically based on the properties of the human visual cortex and predict which areas of a scene have visual features (e.g. color, luminance, edges) that are likely to draw a viewer's attention. While these models can accurately predict where viewers will look in a natural scene, they typically do not perform well for abstract data visualizations. In this paper, we discuss the reasons for the poor performance of existing saliency models when applied to data visualizations. We introduce the Data Visualization Saliency (DVS) model, a saliency model tailored to address some of these weaknesses, and we test the performance of the DVS model and existing saliency models by comparing the saliency maps produced by the models to eye tracking data obtained from human viewers. In conclusion, we describe how modified saliency models could be used as general tools for assessing the effectiveness of visualizations, including the strengths and weaknesses of this approach.
Abstract not provided.
Abstract not provided.
Abstract not provided.