Publications

Results 101–125 of 129

Search results

Jump to search filters

MELCOR Computer Code Manuals

Humphries, Larry; Figueroa Faria, Victor G.; Young, Michael F.; Laros, James H.; Reynolds, John T.

MELCOR is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. MELCOR is being developed at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission as a second-generation plant risk assessment tool and the successor to the Source Term Code Package. A broad spectrum of severe accident phenomena in both boiling and pressurized water reactors is treated in MELCOR in a unified framework. These include thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and confinement buildings; core heatup, degradation, and relocation; core-concrete attack; hydrogen production, transport, and combustion; fission product release and transport behavior. Current uses of MELCOR include estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications.

More Details

MELCOR Computer Code Manuals Volume 3: MELCOR Assessment Problems [Draft]

Humphries, Larry; Laros, James H.; Figueroa Faria, Victor G.; Young, Michael F.; Weber, Scott W.; Ross, Kyle R.; Phillips, Jesse P.

MELCOR is a fully integrated, engineering-level computer code that models the progression of severe accidents in light-water reactor nuclear power plants. MELCOR is being developed at Sandia National Laboratories (SNL) for the U.S. Nuclear Regulatory Commission (NRC) as a second-generation plant risk assessment tool and the successor to the Source Term Code package. A broad spectrum of severe accident phenomena in both boiling and pressurized water reactors is treated in MELCOR in a unified framework. These include thermal-hydraulic response in the reactor coolant system (RCS), reactor cavity, containment, and confinement buildings; core heatup, degradation, and relocation; core-concrete attack; hydrogen production, transport, and combustion; and fission product release and transport behavior. Current uses of MELCOR include estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. This publication of the MELCOR computer code manuals corresponds to MELCOR 2.0, released to users in September 2008. Volume 1 contains a primer that describes MELCOR's phenomenological scope, organization (by package), and documentation. The remainder of Volume 1 contains the MELCOR User's Guides, which provide the input instructions and guidelines for each package. Volume 2 contains the MELCOR Reference Manuals, which describe the phenomenological models that have been implemented in each package. Volume 3, MELCOR Assessment Problems, presents a portfolio of test and sample problems consisting of both analyses of experiments and of full plant problems. These analyses will be repeated with future releases of MELCOR in order to provide a metric on code predictions as new versions are released.

More Details

MELCOR/CONTAIN LMR Implementation Report. FY14 Progress

Laros, James H.; Humphries, Larry

This report describes the preliminary implementation of the sodium thermophysical properties and the design documentation for the sodium models of CONTAIN-LMR to be implemented into MELCOR 2.1. In the past year, the implementation included two separate sodium properties from two different sources. The first source is based on the previous work done by Idaho National Laboratory by modifying MELCOR to include liquid lithium equation of state as a working fluid to model the nuclear fusion safety research. To minimize the impact to MELCOR, the implementation of the fusion safety database (FSD) was done by utilizing the detection of the data input file as a way to invoking the FSD. The FSD methodology has been adapted currently for this work, but it may subject modification as the project continues. The second source uses properties generated for the SIMMER code. Preliminary testing and results from this implementation of sodium properties are given. In this year, the design document for the CONTAIN-LMR sodium models, such as the two condensable option, sodium spray fire, and sodium pool fire is being developed. This design document is intended to serve as a guide for the MELCOR implementation. In addition, CONTAIN-LMR code used was based on the earlier version of CONTAIN code. Many physical models that were developed since this early version of CONTAIN may not be captured by the code. Although CONTAIN 2, which represents the latest development of CONTAIN, contains some sodium specific models, which are not complete, the utilizing CONTAIN 2 with all sodium models implemented from CONTAIN-LMR as a comparison code for MELCOR should be done. This implementation should be completed in early next year, while sodium models from CONTAIN-LMR are being integrated into MELCOR. For testing, CONTAIN decks have been developed for verification and validation use.

More Details
Results 101–125 of 129
Results 101–125 of 129