Publications

Results 1–100 of 193

Search results

Jump to search filters

Molecular-gas-dynamics simulations of turbulent Couette flow over a mean-free-path-scale permeable substrate

Physical Review Fluids

McMullen, Ryan M.; Krygier, Michael K.; Torczynski, J.R.; Gallis, Michail A.

We report flow statistics and visualizations from molecular-gas-dynamics simulations using the direct simulation Monte Carlo (DSMC) method for turbulent Couette flow in a minimal domain where the lower wall is replaced by an idealized permeable fibrous substrate representative of thermal-protection-system materials for which the Knudsen number is O(10-1). Comparisons are made with smooth-wall DSMC simulations and smooth-wall direct numerical simulations (DNS) of the Navier-Stokes equations for the same conditions. Roughness, permeability, and noncontinuum effects are assessed. In the range of Reynolds numbers considered herein, the scalings of the skin friction on the permeable substrate and of the mean flow within the substrate suggest that they are dominated by viscous effects. While the regenerative cycle characteristic of smooth-wall turbulence remains intact for all cases considered, we observe that the near-wall velocity fluctuations are modulated by the permeable substrate with a wavelength equal to the pore spacing. Additionally, the flow within the substrate shows significant rarefaction effects, resulting in an apparent permeability that is 13% larger than the intrinsic permeability. In contrast, the smooth-wall DSMC and DNS simulations exhibit remarkably good agreement for the statistics examined, despite the Knudsen number based on the viscous length scale being as large as O(10-1). This latter result is at variance with classical estimates for the breakdown of the continuum assumption and calls for further investigations into the interaction of noncontinuum effects and turbulence.

More Details

Thermal-fluctuation effects on small-scale statistics in turbulent gas flow

Physics of Fluids

McMullen, Ryan M.; Torczynski, J.R.; Gallis, Michail A.

Kolmogorov's theory of turbulence assumes that the small-scale turbulent structures in the energy cascade are universal and are determined by the energy dissipation rate and the kinematic viscosity alone. However, thermal fluctuations, absent from the continuum description, terminate the energy cascade near the Kolmogorov length scale. Here, we propose a simple superposition model to account for the effects of thermal fluctuations on small-scale turbulence statistics. For compressible Taylor-Green vortex flow, we demonstrate that the superposition model in conjunction with data from direct numerical simulation of the Navier-Stokes equations yields spectra and structure functions that agree with the corresponding quantities computed from the direct simulation Monte Carlo method of molecular gas dynamics, verifying the importance of thermal fluctuations in the dissipation range.

More Details

Navier-Stokes Equations Do Not Describe the Smallest Scales of Turbulence in Gases

Physical Review Letters

McMullen, Ryan M.; Krygier, Michael K.; Torczynski, J.R.; Gallis, Michail A.

In turbulent flows, kinetic energy is transferred from the largest scales to progressively smaller scales, until it is ultimately converted into heat. The Navier-Stokes equations are almost universally used to study this process. Here, by comparing with molecular-gas-dynamics simulations, we show that the Navier-Stokes equations do not describe turbulent gas flows in the dissipation range because they neglect thermal fluctuations. We investigate decaying turbulence produced by the Taylor-Green vortex and find that in the dissipation range the molecular-gas-dynamics spectra grow quadratically with wave number due to thermal fluctuations, in agreement with previous predictions, while the Navier-Stokes spectra decay exponentially. Furthermore, the transition to quadratic growth occurs at a length scale much larger than the gas molecular mean free path, namely in a regime that the Navier-Stokes equations are widely believed to describe. In fact, our results suggest that the Navier-Stokes equations are not guaranteed to describe the smallest scales of gas turbulence for any positive Knudsen number.

More Details

Bubble Behavior in a Vertically Vibrating Enclosed, Liquid-Filled Cylinder

AIAA Journal

Obenauf, Dayna G.; Halls, Benjamin R.; Torczynski, J.R.

When subjected to certain harmonic oscillations, the gas bubble in a partially liquid-filled, closed, vertical cylinder will break up. Under certain conditions, some of the gas will migrate to the bottom due to Bjerknes forces. At sufficiently large amplitudes, the bubble will break up into gas bubbles at the top and bottom ends of the cylinder. High-speed imaging captured the dynamics of bubble breakup and gas migration. Several parameters were investigated: oscillation frequency, oscillation acceleration, gas volume fraction, and liquid viscosity.

More Details

Evaluation of the Barracuda Software Package for Simulating Bubble Motion in Vibrating Liquid-Filled Containers

McMullen, Ryan M.; Torczynski, J.R.

The commercial software package Barracuda, developed by CPFD Software for simulating particle-laden fluid flows, is evaluated as a means to simulate the motion of bubbles in vibrating liquid-filled containers. Demonstration simulations of bubbles rising due to buoyancy forces in a cylinder filled with silicone oil and angled at 0, 30, 45, and 60 degrees from the vertical were performed by CPFD Software. The results of these simulations are discussed, and the capabilities of Barracuda for simulating bubble motion are assessed. It was determined that at present Barracuda does not meet the needs of the desired application. Further developments that would enable its use for this application are highlighted.

More Details

Feasibility of the LAMMPS SPH Package for Simulating Bubble Motion in Vibrating Containers

McMullen, Ryan M.; Torczynski, J.R.

The Smoothed Particle Hydrodynamics (SPH) package within LAMMPS is explored as a possible tool for simulating the motion of bubbles in a vibrating liquid-filled container. As an initial test case, the unphysical but computationally less intense situation of a two-dimensional single bubble rising in a quiescent liquid under the influence of gravity is considered herein. Although physically plausible behavior was obtained under certain conditions, this behavior depends strongly on the system parameters. Moreover, the large density ratio between the liquid and bubble requires extremely small timesteps, which make the simulations undesirably computationally expensive. Ultimately, it was determined that this method is not feasible for providing quantitatively accurate results for the desired application.

More Details

Effect of slip on vortex shedding from a circular cylinder in a gas flow

Physical Review Fluids

Gallis, Michail A.; Torczynski, J.R.

Most studies of vortex shedding from a circular cylinder in a gas flow have explicitly or implicitly assumed that the no-slip condition applies on the cylinder surface. To investigate the effect of slip, vortex shedding is simulated using molecular gas dynamics (the direct simulation Monte Carlo method) and computational fluid dynamics (the incompressible Navier-Stokes equations with a slip boundary condition). A Reynolds number of 100, a Mach number of 0.3, and a corresponding Knudsen number of 0.0048 are examined. For these conditions, compressibility effects are small, and periodic laminar vortex shedding is obtained. Slip on the cylinder is varied using combinations of diffuse and specular molecular reflections with accommodation coefficients from zero (maximum slip) to unity (minimum slip). Although unrealistic, bounce-back molecular reflections are also examined because they approximate the no-slip boundary condition (zero slip). The results from both methods are in reasonable agreement. The shedding frequency increases slightly as the accommodation coefficient is decreased, and shedding ceases at low accommodation coefficients (large slip). The streamwise and transverse forces decrease as the accommodation coefficient is decreased. Based on the good agreement between the two methods, computational fluid dynamics is used to determine the critical accommodation coefficient below which vortex shedding ceases for Reynolds numbers of 60-100 at a Mach number of 0.3. Conditions to observe the effect of slip on vortex shedding appear to be experimentally realizable, although challenging.

More Details

Gas-Induced Motion of a Piston in a Vibrated Liquid-Filled Housing

Journal of Fluids Engineering, Transactions of the ASME

Torczynski, J.R.; O'Hern, Timothy J.; Clausen, Jonathan C.; Koehler, Timothy P.

Models and experiments are developed to investigate how a small amount of gas can cause large rectified motion of a piston in a vibrated liquid-filled housing when piston drag depends on piston position so that damping is nonlinear even for viscous flow. Two bellows serve as surrogates for the upper and lower gas regions maintained by Bjerknes forces. Without the bellows, piston motion is highly damped. With the bellows, the piston, the liquid, and the two bellows move together so that almost no liquid is forced through the gaps between the piston and the housing. This Couette mode has low damping and a strong resonance: the piston and the liquid vibrate against the spring formed by the two bellows (like the pneumatic spring formed by the gas regions). Near this resonance, the piston motion becomes large, and the nonlinear damping produces a large rectified force that pushes the piston downward against its spring suspension. A recently developed model based on quasi-steady Stokes flow is applied to this system. A drift model is developed from the full model and used to determine the equilibrium piston position as a function of vibration amplitude and frequency. Corresponding experiments are performed for two different systems. In the two-spring system, the piston is suspended against gravity between upper and lower springs. In the spring-stop system, the piston is pushed up against a stop by a lower spring. Model and experimental results agree closely for both systems and for different bellows properties.

More Details

Direct simulation Monte Carlo on petaflop supercomputers and beyond

Physics of Fluids

Plimpton, Steven J.; Moore, Stan G.; Borner, A.; Stagg, Alan K.; Koehler, T.P.; Torczynski, J.R.; Gallis, Michail A.

The gold-standard definition of the Direct Simulation Monte Carlo (DSMC) method is given in the 1994 book by Bird [Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Clarendon Press, Oxford, UK, 1994)], which refined his pioneering earlier papers in which he first formulated the method. In the intervening 25 years, DSMC has become the method of choice for modeling rarefied gas dynamics in a variety of scenarios. The chief barrier to applying DSMC to more dense or even continuum flows is its computational expense compared to continuum computational fluid dynamics methods. The dramatic (nearly billion-fold) increase in speed of the largest supercomputers over the last 30 years has thus been a key enabling factor in using DSMC to model a richer variety of flows, due to the method's inherent parallelism. We have developed the open-source SPARTA DSMC code with the goal of running DSMC efficiently on the largest machines, both current and future. It is largely an implementation of Bird's 1994 formulation. Here, we describe algorithms used in SPARTA to enable DSMC to operate in parallel at the scale of many billions of particles or grid cells, or with billions of surface elements. We give a few examples of the kinds of fundamental physics questions and engineering applications that DSMC can address at these scales.

More Details

Gas-kinetic simulation of sustained turbulence in minimal Couette flow

Physical Review Fluids

Gallis, Michail A.; Torczynski, J.R.; Bitter, Neal B.; Koehler, Timothy P.; Plimpton, Steven J.; Papadakis, George

Here, we provide a demonstration that gas-kinetic methods incorporating molecular chaos can simulate the sustained turbulence that occurs in wall-bounded turbulent shear flows. The direct simulation Monte Carlo method, a gas-kinetic molecular method that enforces molecular chaos for gas-molecule collisions, is used to simulate the minimal Couette flow at Re = 500 . The resulting law of the wall, the average wall shear stress, the average kinetic energy, and the continually regenerating coherent structures all agree closely with corresponding results from direct numerical simulation of the Navier-Stokes equations. Finally, these results indicate that molecular chaos for collisions in gas-kinetic methods does not prevent development of molecular-scale long-range correlations required to form hydrodynamic-scale turbulent coherent structures.

More Details

Molecular-Level Simulations of Turbulence and Its Decay

Physical Review Letters

Gallis, Michail A.; Bitter, Neal B.; Koehler, Timothy P.; Torczynski, J.R.; Plimpton, Steven J.; Papadakis, G.

We provide the first demonstration that molecular-level methods based on gas kinetic theory and molecular chaos can simulate turbulence and its decay. The direct simulation Monte Carlo (DSMC) method, a molecular-level technique for simulating gas flows that resolves phenomena from molecular to hydrodynamic (continuum) length scales, is applied to simulate the Taylor-Green vortex flow. The DSMC simulations reproduce the Kolmogorov -5/3 law and agree well with the turbulent kinetic energy and energy dissipation rate obtained from direct numerical simulation of the Navier-Stokes equations using a spectral method. This agreement provides strong evidence that molecular-level methods for gases can be used to investigate turbulent flows quantitatively.

More Details

Gas-induced motion of an object in a liquid-filled housing during vibration: II. Experiments

American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM

O'Hern, Timothy J.; Torczynski, J.R.; Clausen, Jonathan C.; Koehler, Timothy P.

We develop an idealized experimental system for studying how a small amount of gas can cause large net (rectified) motion of an object in a vibrated liquid-filled housing when the drag on the object depends strongly on its position. Its components include a cylindrical housing, a cylindrical piston fitting closely within this housing, a spring suspension that supports the piston, a post penetrating partway through a hole through the piston (which produces the position-dependent drag), and compressible bellows at both ends of the housing (which are well characterized surrogates for gas regions). In this system, liquid can flow from the bottom to the top of the piston and vice versa through the thin annular gaps between the hole and the post (the inner gap) and between the housing and the piston (the outer gap). When the bellows are absent, the piston motion is highly damped because small piston velocities produce large liquid velocities and large pressure drops in the Poiseuille flows within these narrow gaps. However, when the bellows are present, the piston, the liquid, and the bellows execute a collective motion called the Couette mode in which almost no liquid is forced through the gaps. Since its damping is low, the Couette mode has a strong resonance. Near this frequency, the piston motion becomes large, and the nonlinearity associated with the position-dependent drag of the inner gap produces a net (rectified) force on the piston that can cause it to move downward against its spring suspension. Experiments are performed using two variants of this system. In the single-spring setup, the piston is pushed up against a stop by its lower supporting spring. In the two-spring setup, the piston is suspended between upper and lower springs. The equilibrium piston position is measured as a function of the vibration frequency and acceleration, and these results are compared to corresponding analytical results (Torczynski et al., 2017). A quantitative understanding of the nonlinear behavior of this system may enable the development of novel tunable dampers for sensing vibrations of specified amplitudes and frequencies.

More Details

Gas-induced motion of an object in a liquid-filled housing during vibration: I. Analysis

American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM

Torczynski, J.R.; O'Hern, Timothy J.; Clausen, Jonathan C.; Koehler, Timothy P.

Models and simulations are employed to analyze the motion of a spring-supported piston in a vibrated liquid-filled cylinder. The piston motion is damped by forcing liquid through a narrow gap between a hole through the piston and a post fixed to the housing. As the piston moves, the length of this gap changes, so the piston damping coefficient depends on the piston position. This produces a nonlinear damper, even for highly viscous flow. When gas is absent, the vibration response is overdamped. However, adding a little gas changes the response of this springmass-damper system to vibration. During vibration, Bjerknes forces cause some of the gas to migrate below the piston. The resulting pneumatic spring enables the liquid to move with the piston so as to force very little liquid through the gap. Thus, this "Couette mode" has low damping and a strong resonance near the frequency given by the pneumatic spring constant and the total mass of the piston and the liquid. Near this frequency, the amplitude of the piston motion is large, so the nonlinear damper produces a large net force on the piston. To analyze the effect of this nonlinear damper in detail, a surrogate system is developed by modifying the original system in two ways. First, the gas regions are replaced by upper and lower bellows with similar compressibility to give a well-defined "pneumatic" spring. Second, the upper stop against which the piston is pushed by its lower supporting spring is replaced with an upper spring, thereby removing the nonlinearity from the stop. An ordinary-differential-equation (ODE) drift model based on quasi-steady Stokes flow is used to produce a regime map of the vibration amplitudes and frequencies for which the piston is up or down for conditions of experimental interest. These results agree fairly well with Arbitrary Lagrangian Eulerian (ALE) simulations of the incompressible Navier-Stokes (NS) equations for the liquid and Newton's 2nd Law for the piston and bellows. A quantitative understanding of this nonlinear behavior may enable the development of novel tunable dampers for sensing vibrations of specified amplitudes and frequencies.

More Details

Gas-induced motion of an object in a liquid-filled housing during vibration: I. Analysis

American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM

Torczynski, J.R.; O'Hern, Timothy J.; Clausen, Jonathan C.; Koehler, Timothy P.

Models and simulations are employed to analyze the motion of a spring-supported piston in a vibrated liquid-filled cylinder. The piston motion is damped by forcing liquid through a narrow gap between a hole through the piston and a post fixed to the housing. As the piston moves, the length of this gap changes, so the piston damping coefficient depends on the piston position. This produces a nonlinear damper, even for highly viscous flow. When gas is absent, the vibration response is overdamped. However, adding a little gas changes the response of this springmass-damper system to vibration. During vibration, Bjerknes forces cause some of the gas to migrate below the piston. The resulting pneumatic spring enables the liquid to move with the piston so as to force very little liquid through the gap. Thus, this "Couette mode" has low damping and a strong resonance near the frequency given by the pneumatic spring constant and the total mass of the piston and the liquid. Near this frequency, the amplitude of the piston motion is large, so the nonlinear damper produces a large net force on the piston. To analyze the effect of this nonlinear damper in detail, a surrogate system is developed by modifying the original system in two ways. First, the gas regions are replaced by upper and lower bellows with similar compressibility to give a well-defined "pneumatic" spring. Second, the upper stop against which the piston is pushed by its lower supporting spring is replaced with an upper spring, thereby removing the nonlinearity from the stop. An ordinary-differential-equation (ODE) drift model based on quasi-steady Stokes flow is used to produce a regime map of the vibration amplitudes and frequencies for which the piston is up or down for conditions of experimental interest. These results agree fairly well with Arbitrary Lagrangian Eulerian (ALE) simulations of the incompressible Navier-Stokes (NS) equations for the liquid and Newton's 2nd Law for the piston and bellows. A quantitative understanding of this nonlinear behavior may enable the development of novel tunable dampers for sensing vibrations of specified amplitudes and frequencies.

More Details

Gas-induced motion of an object in a liquid-filled housing during vibration: II. Experiments

American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM

O'Hern, Timothy J.; Torczynski, J.R.; Clausen, Jonathan C.; Koehler, Timothy P.

We develop an idealized experimental system for studying how a small amount of gas can cause large net (rectified) motion of an object in a vibrated liquid-filled housing when the drag on the object depends strongly on its position. Its components include a cylindrical housing, a cylindrical piston fitting closely within this housing, a spring suspension that supports the piston, a post penetrating partway through a hole through the piston (which produces the position-dependent drag), and compressible bellows at both ends of the housing (which are well characterized surrogates for gas regions). In this system, liquid can flow from the bottom to the top of the piston and vice versa through the thin annular gaps between the hole and the post (the inner gap) and between the housing and the piston (the outer gap). When the bellows are absent, the piston motion is highly damped because small piston velocities produce large liquid velocities and large pressure drops in the Poiseuille flows within these narrow gaps. However, when the bellows are present, the piston, the liquid, and the bellows execute a collective motion called the Couette mode in which almost no liquid is forced through the gaps. Since its damping is low, the Couette mode has a strong resonance. Near this frequency, the piston motion becomes large, and the nonlinearity associated with the position-dependent drag of the inner gap produces a net (rectified) force on the piston that can cause it to move downward against its spring suspension. Experiments are performed using two variants of this system. In the single-spring setup, the piston is pushed up against a stop by its lower supporting spring. In the two-spring setup, the piston is suspended between upper and lower springs. The equilibrium piston position is measured as a function of the vibration frequency and acceleration, and these results are compared to corresponding analytical results (Torczynski et al., 2017). A quantitative understanding of the nonlinear behavior of this system may enable the development of novel tunable dampers for sensing vibrations of specified amplitudes and frequencies.

More Details

Direct simulation Monte Carlo investigation of the Rayleigh-Taylor instability

Physical Review Fluids

Gallis, Michail A.; Koehler, Timothy P.; Torczynski, J.R.; Plimpton, Steven J.

The Rayleigh-Taylor instability (RTI) is investigated using the direct simulation Monte Carlo (DSMC) method of molecular gas dynamics. Here, fully resolved two-dimensional DSMC RTI simulations are performed to quantify the growth of flat and single-mode perturbed interfaces between two atmospheric-pressure monatomic gases as a function of the Atwood number and the gravitational acceleration. The DSMC simulations reproduce many qualitative features of the growth of the mixing layer and are in reasonable quantitative agreement with theoretical and empirical models in the linear, nonlinear, and self-similar regimes. In some of the simulations at late times, the instability enters the self-similar regime, in agreement with experimental observations. For the conditions simulated, diffusion can influence the initial instability growth significantly.

More Details

Multiphase effects in dynamic systems under vibration

American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM

O'Hern, Timothy J.; Torczynski, J.R.; Clausen, Jonathan C.

Analysis, simulations, and experiments are performed for a piston in a vibrated liquid-filled cylinder, where the damping caused by forcing liquid through narrow gaps depends almost linearly on the piston position. Adding a little gas completely changes the dynamics of this spring-mass-damper system when it is subject to vibration. When no gas is present, the piston's vibrational response is highly overdamped due to the viscous liquid being forced through the narrow gaps. When a small amount of gas is added, Bjerknes forces cause some gas to migrate below the piston. The resulting pneumatic spring enables the liquid to move with the piston so that little liquid is forced through the gaps. This "Couette mode" thus has low damping and a strong resonance near the frequency given by the pneumatic spring constant and the piston mass. Near this frequency, the piston response is large, and the nonlinearity from the varying gap length produces a net force on the piston. This "rectified" force can be many times the piston's weight and can cause the piston to compress its supporting spring. A surrogate system in which the gas regions are replaced by upper and lower bellows with similar compressibility is studied. A recently developed theory for the piston and bellows motions is compared to finite element simulations. The liquid obeys the unsteady incompressible Navier-Stokes equations, and the piston and the bellows obey Newton's 2nd Law. Due to the large piston displacements near resonance, an Arbitrary Lagrangian Eulerian (ALE) technique with a sliding-mesh scheme is used to limit mesh distortion. Theory and simulation results for the piston motion are in good agreement. Experiments are performed with liquid only, with gas present, and with upper and lower bellows replacing the gas. Liquid viscosity, bellows compressibility, vibration amplitude, and gap geometry are varied to determine their effects on the frequency at which the rectified force makes the piston move down. This critical frequency is found to depend on whether the frequency is increased or decreased with time.

More Details

Gas-enabled resonance and rectified motion of a piston in a vibrated housing filled with a viscous liquid

Journal of Fluids Engineering

Romero, Louis A.; Torczynski, J.R.; Clausen, Jonathan C.; O'Hern, Timothy J.; Benavides, Gilbert L.

Herein, we show how introducing a small amount of gas can completely change the motion of a solid object in a viscous liquid during vibration. We analyze an idealized system exhibiting this behavior: a piston moving in a liquid-filled housing, where the gaps between the piston and the housing are narrow and depend on the piston position. Recent experiments have shown that vibration causes some gas to move below the piston and the piston to subsequently move downward and compress its supporting spring. Herein, we analyze the analogous but simpler situation in which the gas regions are replaced by bellows with similar pressure-volume relationships. We show that these bellows form a spring (analogous to the pneumatic spring formed by the gas regions) which enables the piston and the liquid to oscillate in a mode that does not exist without this spring. This mode is referred to here as the Couette mode because the liquid in the gaps moves essentially in Couette flow (i.e., with almost no component of Poiseuille flow). Since Couette flow by itself produces extremely low damping, the Couette mode has a strong resonance. We show that, near this resonance, the dependence of the gap geometry on the piston position produces a large rectified (net) force on the piston during vibration. As a result, this force can be much larger than the piston weight and the strength of its supporting spring and is in the direction that decreases the flow resistance of the gap geometry.

More Details

Direct simulation Monte Carlo investigation of the Richtmyer-Meshkov instability

Physics of Fluids

Gallis, Michail A.; Koehler, Timothy P.; Torczynski, J.R.; Plimpton, Steven J.

The Richtmyer-Meshkov instability (RMI) is investigated using the Direct Simulation Monte Carlo (DSMC) method of molecular gas dynamics. Due to the inherent statistical noise and the significant computational requirements, DSMC is hardly ever applied to hydrodynamic flows. Here, DSMC RMI simulations are performed to quantify the shock-driven growth of a single-mode perturbation on the interface between two atmospheric-pressure monatomic gases prior to re-shocking as a function of the Atwood and Mach numbers. The DSMC results qualitatively reproduce all features of the RMI and are in reasonable quantitative agreement with existing theoretical and empirical models. The DSMC simulations indicate that there is a universal behavior, consistent with previous work in this field that RMI growth follows.

More Details

Protection of extreme ultraviolet lithography masks. II. Showerhead flow mitigation of nanoscale particulate contamination

Journal of Vacuum Science and Technology B: Nanotechnology and Microelectronics

Klebanoff, Leonard E.; Torczynski, J.R.; Geller, Anthony S.; Gallis, Michael A.; Rader, Daniel J.; Chilese, Frank C.; Garcia, Rudy F.; Delgado, Gil

An analysis is presented of a method to protect the reticle (mask) in an extreme ultraviolet (EUV) mask inspection tool using a showerhead plenum to provide a continuous flow of clean gas over the surface of a reticle. The reticle is suspended in an inverted fashion (face down) within a stage/holder that moves back and forth over the showerhead plenum as the reticle is inspected. It is essential that no particles of 10-nm diameter or larger be deposited on the reticle during inspection. Particles can originate from multiple sources in the system, and mask protection from each source is explicitly analyzed. The showerhead plate has an internal plenum with a solid conical wall isolating the aperture. The upper and lower surfaces of the plate are thin flat sheets of porous-metal material. These porous sheets form the top and bottom showerheads that supply the region between the showerhead plate and the reticle and the region between the conical aperture and the Optics Zone box with continuous flows of clean gas. The model studies show that the top showerhead provides robust reticle protection from particles of 10-nm diameter or larger originating from the Reticle Zone and from plenum surfaces contaminated by exposure to the Reticle Zone. Protection is achieved with negligible effect on EUV transmission. The bottom showerhead efficiently protects the reticle from nanoscale particles originating from the Optics Zone. With similar mass flow rates from the two showerheads, this system provides efficient protection even when a significant overpressure exists between the Optics Zone and the Reticle Zone. Performance is insensitive to the fraction of incident particles that sticks to walls, the accommodation coefficient, the aperture geometry, and the gas pressure. The showerheads also protect the aperture (and therefore the Optics Zone) during mask loading and unloading. Commercially available porous-metal media have properties suitable for these showerheads at the required flow rates. The benefits of the approach compared to a conceptual EUV pellicle are described.

More Details

The effect of internal energy on chemical reaction rates as predicted by Bird's quantum-kinetic model

AIP Conference Proceedings

Gallis, Michail A.; Torczynski, J.R.

The effect of non-equilibrium internal energy excitation on the reaction rates predicted by Bird's Quantum-Kinetic (Q-K) model for dissociation and exchange reactions is analyzed. The effect of vibrational non-equilibrium is treated explicitly by the Q-K model. The effect of rotational non-equilibrium is introduced as a perturbation to the effect of vibrational non-equilibrium in chemical reactions. For dissociation reactions, a small but measurable improvement in the rates is observed. For exchange reactions, the change is negligible. These findings are in agreement with experimental observations and theoretical predictions. The results from one-dimensional stagnation-streamline and two-dimensional axi-symmetric DSMC code implementations of the original and modified Q-K models are compared for a typical re-entry flow. The influence of rotational non-equilibrium in promoting chemical reactions is seen to be small for this type of flow. © 2012 American Institute of Physics.

More Details

The effect of internal energy on chemical reaction rates as predicted by Bird's quantum-kinetic model

AIP Conference Proceedings

Gallis, Michail A.; Torczynski, J.R.

The effect of non-equilibrium internal energy excitation on the reaction rates predicted by Bird's Quantum-Kinetic (Q-K) model for dissociation and exchange reactions is analyzed. The effect of vibrational non-equilibrium is treated explicitly by the Q-K model. The effect of rotational non-equilibrium is introduced as a perturbation to the effect of vibrational non-equilibrium in chemical reactions. For dissociation reactions, a small but measurable improvement in the rates is observed. For exchange reactions, the change is negligible. These findings are in agreement with experimental observations and theoretical predictions. The results from one-dimensional stagnation-streamline and two-dimensional axi-symmetric DSMC code implementations of the original and modified Q-K models are compared for a typical re-entry flow. The influence of rotational non-equilibrium in promoting chemical reactions is seen to be small for this type of flow. © 2012 American Institute of Physics.

More Details

Steady isothermal gas mass flow rate in a microscale tube from continuum to free-molecular conditions

41st AIAA Fluid Dynamics Conference and Exhibit

Gallis, Michail A.; Torczynski, J.R.

The Direct Simulation Monte Carlo (DSMC) method of molecular gas dynamics is used to simulate the steady flow of an ideal gas through a long thin isothermal microscale tube connecting two infinite reservoirs at different pressures. The tube wall is at the reservoir temperature, and molecules reflect from the walls according to the Maxwell model (i.e., a linear combination of specular reflections and diffuse reflections at the wall temperature). The computed mass flow rates approach the known expressions in the near-continuum and free-molecular regimes and agree reasonably with recent experimental measurements in microscale tubes and channels. Approximate closed-form expressions for the mass flow rate and the pressure profile along the tube are developed and are in reasonable agreement with the DSMC results in all regimes and for all values of the accommodation coefficient. © 2011 by the American Institute of Aeronautics and Astronautics, Inc.

More Details

Steady isothermal gas mass flow rate in a microscale tube from continuum to free-molecular conditions

41st AIAA Fluid Dynamics Conference and Exhibit

Gallis, Michail A.; Torczynski, J.R.

The Direct Simulation Monte Carlo (DSMC) method of molecular gas dynamics is used to simulate the steady flow of an ideal gas through a long thin isothermal microscale tube connecting two infinite reservoirs at different pressures. The tube wall is at the reservoir temperature, and molecules reflect from the walls according to the Maxwell model (i.e., a linear combination of specular reflections and diffuse reflections at the wall temperature). The computed mass flow rates approach the known expressions in the near-continuum and free-molecular regimes and agree reasonably with recent experimental measurements in microscale tubes and channels. Approximate closed-form expressions for the mass flow rate and the pressure profile along the tube are developed and are in reasonable agreement with the DSMC results in all regimes and for all values of the accommodation coefficient. © 2011 by the American Institute of Aeronautics and Astronautics, Inc.

More Details

DSMC moving-boundary algorithms for simulating mems geometries with opening and closing gaps

AIP Conference Proceedings

Rader, Daniel J.; Gallis, Michail A.; Torczynski, J.R.

Moving-boundary algorithms for the Direct Simulation Monte Carlo (DSMC) method are investigated for a microbeam that moves toward and away from a parallel substrate. The simpler but analogous one-dimensional situation of a piston moving between two parallel walls is investigated using two moving-boundary algorithms. In the first, molecules are reflected rigorously from the moving piston by performing the reflections in the piston frame of reference. In the second, molecules are reflected approximately from the moving piston by moving the piston and subsequently moving all molecules and reflecting them from the moving piston at its new or old position. © 2011 American Institute of Physics.

More Details

An experimental assembly for precise measurement of thermal accommodation coefficients

Review of Scientific Instruments

Trott, Wayne T.; Castaneda, Jaime N.; Torczynski, J.R.; Gallis, Michail A.; Rader, Daniel J.

An experimental apparatus has been developed to determine thermal accommodation coefficients for a variety of gas-surface combinations. Results are obtained primarily through measurement of the pressure dependence of the conductive heat flux between parallel plates separated by a gas-filled gap. Measured heat-flux data are used in a formula based on Direct Simulation Monte Carlo (DSMC) simulations to determine the coefficients. The assembly also features a complementary capability for measuring the variation in gas density between the plates using electron-beam fluorescence. Surface materials examined include 304 stainless steel, gold, aluminum, platinum, silicon, silicon nitride, and polysilicon. Effects of gas composition, surface roughness, and surface contamination have been investigated with this system; the behavior of gas mixtures has also been explored. Without special cleaning procedures, thermal accommodation coefficients for most materials and surface finishes were determined to be near 0.95, 0.85, and 0.45 for argon, nitrogen, and helium, respectively. Surface cleaning by in situ argon-plasma treatment reduced coefficient values by up to 0.10 for helium and by ∼0.05 for nitrogen and argon. Results for both single-species and gas-mixture experiments compare favorably to DSMC simulations. © 2011 American Institute of Physics.

More Details

Improved-efficiency DSMC collision-partner selection schemes

Gallis, Michail A.; Torczynski, J.R.

The effect of collision-partner selection schemes on the accuracy and the efficiency of the Direct Simulation Monte Carlo (DSMC) method of Bird is investigated. Several schemes to reduce the total discretization error as a function of the mean collision separation and the mean collision time are examined. These include the historically first sub-cell scheme, the more recent nearest-neighbor scheme, and various near-neighbor schemes, which are evaluated for their effect on the thermal conductivity for Fourier flow. Their convergence characteristics as a function of spatial and temporal discretization and the number of simulators per cell are compared to the convergence characteristics of the sophisticated and standard DSMC algorithms. Improved performance is obtained if the population from which possible collision partners are selected is an appropriate fraction of the population of the cell.

More Details

The terminal velocity of a bubble in an oscillating flow

Torczynski, J.R.; Kraynik, Andrew M.

A bubble in an acoustic field experiences a net 'Bjerknes' force from the nonlinear coupling of its radial oscillations with the oscillating buoyancy force. It is typically assumed that the bubble's net terminal velocity can be found by considering a spherical bubble with the imposed 'Bjerknes stresses'. We have analyzed the motion of such a bubble using a rigorous perturbation approach and found that one must include a term involving an effective mass flux through the bubble that arises from the time average of the second-order nonlinear terms in the kinematic boundary condition. The importance of this term is governed by the dimensionless parameter {alpha} = R{sup 2} {phi}/R{sup 2} {phi} {nu}.-{nu}, where R is the bubble radius, {phi} is the driving frequency, and {nu} is the liquid kinematic viscosity. If {alpha} is large, this term is unimportant, but if {alpha} is small, this term is the dominant factor in determining the terminal velocity.

More Details

Measured and predicted temperature profiles along MEMS bridges at pressures from 0.05 to 625 torr

Phinney, Leslie M.; Serrano, Justin R.; Piekos, Edward S.; Torczynski, J.R.; Gallis, Michail A.; Gorby, Allen D.

We will present experimental and computational investigations of the thermal performance of microelectromechanical systems (MEMS) as a function of the surrounding gas pressure. Lowering the pressure in MEMS packages reduces gas damping, providing increased sensitivity for certain MEMS sensors; however, such packaging also dramatically affects their thermal performance since energy transfer to the environment is substantially reduced. High-spatial-resolution Raman thermometry was used to measure the temperature profiles on electrically heated, polycrystalline silicon bridges that are nominally 10 microns wide, 2.25 microns thick, 12 microns above the substrate, and either 200 or 400 microns long in nitrogen atmospheres with pressures ranging from 0.05 to 625 Torr. Finite element modeling of the thermal behavior of the MEMS bridges is performed and compared to the experimental results. Noncontinuum gas effects are incorporated into the continuum finite element model by imposing temperature discontinuities at gas-solid interfaces that are determined from noncontinuum simulations. The experimental and simulation results indicate that at pressures below 0.5 Torr the gas-phase heat transfer is negligible compared to heat conduction through the thermal actuator legs. As the pressure increases above 0.5 Torr, the gas-phase heat transfer becomes more significant. At ambient pressures, gas-phase heat transfer drastically impacts the thermal performance. The measured and simulated temperature profiles are in qualitative agreement in the present study. Quantitative agreement between experimental and simulated temperature profiles requires accurate knowledge of temperature-dependent thermophysical properties, the device geometry, and the thermal accommodation coefficient.

More Details

Determination of thermal accommodation coefficients from heat transfer measurements between parallel plates

Trott, Wayne T.; Torczynski, J.R.; Gallis, Michail A.; Rader, Daniel J.; Castaneda, Jaime N.

Thermal accommodation coefficients have been derived for a variety of gas-surface combinations using an experimental apparatus developed to measure the pressure dependence of the conductive heat flux between parallel plates at unequal temperature separated by a gas-filled gap. The heat flux is inferred from temperature-difference measurements across the plates in a configuration where the plate temperatures are set with two carefully controlled thermal baths. Temperature-controlled shrouds provide for environmental isolation of the opposing test plates. Since the measured temperature differences in these experiments are very small (typically 0.3 C or less over the entire pressure range), high-precision thermistors are used to acquire the requisite temperature data. High-precision components have also been utilized on the other control and measurement subsystems in this apparatus, including system pressure, gas flow rate, plate alignment, and plate positions. The apparatus also includes the capability for in situ plasma cleaning of the installed test plates. Measured heat-flux results are used in a formula based on Direct Simulation Monte Carlo (DSMC) code calculations to determine the thermal accommodation coefficients. Thermal accommodation coefficients have been determined for three different gases (argon, nitrogen, helium) in contact with various surfaces. Materials include metals and alloys such as aluminum, gold, platinum, and 304 stainless steel. A number of materials important to fabrication of Micro Electro Mechanical Systems (MEMS) devices have also been examined. For most surfaces, coefficient values are near 0.95, 0.85, and 0.45 for argon, nitrogen, and helium, respectively. Only slight differences in accommodation as a function of surface roughness have been seen. Surface contamination appears to have a more significant effect: argon plasma treatment has been observed to reduce thermal accommodation by as much as 0.10 for helium. Mixtures of argon and helium have also been examined, and the results have been compared to DSMC simulations incorporating thermal-accommodation values from single-species experiments.

More Details
Results 1–100 of 193
Results 1–100 of 193