Mechanical Design and Fabrication of Compact Portable Nuclear Particle Detectors
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Instrumentation
The development of fast, highly pixelated photodetectors with single-photon sensitivity has the potential to enable a variety of new radiation detection concepts. Systems that desire to employ these detectors without loss of information demand waveform digitization with high sampling rates. Switched capacitor arrays provide a low-cost, low-power, compact solution to fast readout with high channel density. The Sandia Laboratories Compact Electronics for Modular Acquisition (SCEMA) was developed to meet these demands. A single module employs two domino ring sampling switched capacitor arrays (DRS4) [1] to provide 16 channels of up to 5 GS/s waveform digitization. This paper presents an overview of the board design and function. Calibration procedures for the module are discussed. Finally, temporal resolution tests are presented demonstrating the module's viability as readout for high fidelity temporal measurements of single photons in suitable photodetectors.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Transactions on Nuclear Science
The scintillation anisotropy effect for proton recoil events has been investigated in five pure organic crystalline materials: Anthracene, trans-stilbene, p-terphenyl, bibenzyl, and diphenylacetylene (DPAC). These measurements include the characterization of the scintillation response for one hemisphere of proton recoil directions in each crystal. In addition to standard measurements of the total light output and pulse shape at each angle, the prompt and delayed light anisotropies are analyzed, allowing for the investigation of the singlet and triplet molecular excitation behaviors independently. This paper provides new quantitative and qualitative observations that make progress toward understanding the physical mechanisms behind the scintillation anisotropy. These measurements show that the relationship between the prompt and delayed light anisotropies is correlated with a crystal structure, as it changes between the pi-stacked crystal structure materials (anthracene and p-terphenyl) and the herringbone crystal structure materials (stilbene, bibenzyl, and DPAC). The observations are consistent with a model in which there are preferred directions of kinetic processes for the molecular excitations. These processes and the impact of their directional dependences on the scintillation anisotropy are discussed.
Abstract not provided.
Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
This paper presents the model-based design and evaluation of an instrument that estimates incident neutron direction using the kinematics of neutron scattering by hydrogen-1 nuclei in an organic scintillator. The instrument design uses a single, nearly contiguous volume of organic scintillator that is internally subdivided only as necessary to create optically isolated pillars, i.e., long, narrow parallelepipeds of organic scintillator. Scintillation light emitted in a given pillar is confined to that pillar by a combination of total internal reflection and a specular reflector applied to the four sides of the pillar transverse to its long axis. The scintillation light is collected at each end of the pillar using a photodetector, e.g., a microchannel plate photomultiplier (MCP-PM) or a silicon photomultiplier (SiPM). In this optically segmented design, the (x,y) position of scintillation light emission (where the x and y coordinates are transverse to the long axis of the pillars) is estimated as the pillar's (x,y) position in the scintillator “block”, and the z-position (the position along the pillar's long axis) is estimated from the amplitude and relative timing of the signals produced by the photodetectors at each end of the pillar. The neutron's incident direction and energy is estimated from the (x,y,z)-positions of two sequential neutron–proton scattering interactions in the scintillator block using elastic scatter kinematics. For proton recoils greater than 1 MeV, we show that the (x,y,z)-position of neutron–proton scattering can be estimated with < 1 cm root-mean-squared [RMS] error and the proton recoil energy can be estimated with < 50 keV RMS error by fitting the photodetectors’ response time history to models of optical photon transport within the scintillator pillars. Finally, we evaluate several alternative designs of this proposed single-volume scatter camera made of pillars of plastic scintillator (SVSC-PiPS), studying the effect of pillar dimensions, scintillator material (EJ-204, EJ-232Q and stilbene), and photodetector (MCP-PM vs. SiPM) response vs. time. We demonstrate that the most precise estimates of incident neutron direction and energy can be obtained using a combination of scintillator material with high luminosity and a photodetector with a narrow impulse response. Specifically, we conclude that an SVSC-PiPS constructed using EJ-204 (a high luminosity plastic scintillator) and an MCP-PM will produce the most precise estimates of incident neutron direction and energy.
Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
We present the design, characterization, and testing of a laboratory prototype radiological search and localization system. The system, based on time-encoded imaging, uses the attenuation signature of neutrons in time, induced by the geometrical layout and motion of the system. We have demonstrated the ability to detect a ∼1mCi252Cf radiological source at 100m standoff with 90% detection efficiency and 10% false positives against background in 12min. This same detection efficiency is met at 15s for a 40m standoff, and 1.2s for a 20m standoff.
2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop, NSS/MIC/RTSD 2016
We investigate the feasibility of constructing a data-driven distance metric for use in null-hypothesis testing in the context of arms-control treaty verification. The distance metric is used in testing the hypothesis that the available data are representative of a certain object or otherwise, as opposed to binary-classification tasks studied previously. The metric, being of strictly quadratic form, is essentially computed using projections of the data onto a set of optimal vectors. These projections can be accumulated in list mode. The relatively low number of projections hampers the possible reconstruction of the object and subsequently the access to sensitive information. The projection vectors that channelize the data are optimal in capturing the Mahalanobis squared distance of the data associated with a given object under varying nuisance parameters. The vectors are also chosen such that the resulting metric is insensitive to the difference between the trusted object and another object that is deemed to contain sensitive information. Data used in this study were generated using the GEANT4 toolkit to model gamma transport using a Monte Carlo method. For numerical illustration, the methodology is applied to synthetic data obtained using custom models for plutonium inspection objects. The resulting metric based on a relatively low number of channels shows moderate agreement with the Mahalanobis distance metric for the trusted object but enabling a capability to obscure sensitive information.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
This paper reports a series of measurements that characterize the directional dependence of the scintillation response of crystalline melt-grown and solution-grown trans-stilbene to incident DT and DD neutrons. These measurements give the amplitude and pulse shape dependence on the proton recoil direction over one hemisphere of the crystal, confirming and extending previous results in the literature for melt-grown stilbene and providing the first measurements for solution-grown stilbene. In similar measurements of liquid and plastic detectors, no directional dependence was observed, confirming the hypothesis that the anisotropy in stilbene and other organic crystal scintillators is a result of internal effects due to the molecular or crystal structure and not an external effect on the measurement system.
Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
In an effort to characterize the fast neutron radiation background, 16 EJ-309 liquid scintillator cells were installed in the Radiological Multi-sensor Analysis Platform (RadMAP) to collect data in the San Francisco Bay Area. Each fast neutron event was associated with specific weather metrics (pressure, temperature, absolute humidity) and GPS coordinates. The expected exponential dependence of the fast neutron count rate on atmospheric pressure was demonstrated and event rates were subsequently adjusted given the measured pressure at the time of detection. Pressure adjusted data was also used to investigate the influence of other environmental conditions on the neutron background rate. Using National Oceanic and Atmospheric Administration (NOAA) coastal area lidar data, an algorithm was implemented to approximate sky-view factors (the total fraction of visible sky) for points along RadMAPs route. Three areas analyzed in San Francisco, Downtown Oakland, and Berkeley all demonstrated a suppression in the background rate of over 50% for the range of sky-view factors measured. This effect, which is due to the shielding of cosmic-ray produced neutrons by surrounding buildings, was comparable to the pressure influence which yielded a 32% suppression in the count rate over the range of pressures measured.
Abstract not provided.
Abstract not provided.
Abstract not provided.