Publications

Results 26–50 of 55

Search results

Jump to search filters

A Reference Architecture For EmulyticsTM Clusters

Floren, John F.; Friesen, Jerrold A.; Ulmer, Craig D.; Jones, Stephen T.

In this document we describe a reference architecture developed for EmulyticsTM clusters at Sandia National Laboratories. Taking into consideration the constraints of our Emulytics software and the requirements for integration with the larger computing facilities at Sandia, we developed a cluster platform suitable for use by Sandia's several Emulytics toolsets and also useful for more general large-scale computing tasks.

More Details

ATDM Data Management FY2015: Data Warehouse Progress Report

Ulmer, Craig D.; Fabian, Nathan D.; Kordenbrock, Todd H.; Mukherjee, Shyamali M.; Oldfield, Ron A.; Templet, Gary J.

The Advanced Technology Development and Mitigation (ATDM) program at Sandia National Laboratories is a new effort to build next-generation simulation codes that will map well to upcoming exascale computing platforms. Rather than follow traditional single- program, multiple data (SPMD) programming techniques, ATDM is developing applications in an asynchronous many task (AMT) form that describes work as a graph of tasks that have data dependencies. The data management team is focused on developing a data warehouse for ATDM that will enable tasks to store and exchange data objects efficiently. This report summarizes the data management teams efforts during FY15, and documents: (1) an initial API and implementation for the data warehouses key/value store, (2) API requirements for use with ATDMs runtime, (3) initial requirements for storing ATDM-specific data, and (4) the current organization of software components that will be used by the data warehouse.

More Details

Kelpie: FY2014 Project Update

Ulmer, Craig D.; Mukherjee, Shyamali M.; Templet, Gary J.

The ASC CSSE project Kelpie is a research and development project focused on developing a distributed, in-memory data management system that can be leveraged in a number of high-performance computing (HPC) applications. After FY13s demonstration that a key/value data store could be implemented on top of the Nessie RDMA/RPC library, we began refactoring Kelpie in FY14 in order to make it more usable by other research teams that need it for upcoming milestones. This report provides a summary of the different efforts in FY14 that took place to make Kelpie a more usable system.

More Details

Investigating the integration of supercomputers and data-Warehouse appliances

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Oldfield, Ron A.; Davidson, George; Ulmer, Craig D.; Wilson, Andrew T.

Two decades of experience with massively parallel supercomputing has given insight into the problem domains where these architectures are cost effective. Likewise experience with database machines and more recently massively parallel database appliances has shown where these architectures are valuable. Combining both architectures to simultaneously solve problems has received much less attention. In this paper, we describe a motivating application for economic modeling that requires both HPC and database capabilities. Then we discuss hardware and software integration issues related to a direct integration of a Cray XT supercomputer and a Netezza database appliance. © 2014 Springer-Verlag Berlin Heidelberg.

More Details

Scientific data analysis on data-parallel platforms

Roe, Diana C.; Choe, Yung R.; Ulmer, Craig D.

As scientific computing users migrate to petaflop platforms that promise to generate multi-terabyte datasets, there is a growing need in the community to be able to embed sophisticated analysis algorithms in the computing platforms' storage systems. Data Warehouse Appliances (DWAs) are attractive for this work, due to their ability to store and process massive datasets efficiently. While DWAs have been utilized effectively in data-mining and informatics applications, they remain largely unproven in scientific workloads. In this paper we present our experiences in adapting two mesh analysis algorithms to function on five different DWA architectures: two Netezza database appliances, an XtremeData dbX database, a LexisNexis DAS, and multiple Hadoop MapReduce clusters. The main contribution of this work is insight into the differences between these DWAs from a user's perspective. In addition, we present performance measurements for ten DWA systems to help understand the impact of different architectural trade-offs in these systems.

More Details

A configurable-hardware document-similarity classifier to detect web attacks

Proceedings of the 2010 IEEE International Symposium on Parallel and Distributed Processing, Workshops and Phd Forum, IPDPSW 2010

Ulmer, Craig D.; Gokhale, Maya

This paper describes our approach to adapting a text document similarity classifier based on the Term Frequency Inverse Document Frequency (TFIDF) metric [11] to reconfigurable hardware. The TFIDF classifier is used to detect web attacks in HTTP data. In our reconfigurable hardware approach, we design a streaming, real-time classifier by simplifying an existing sequential algorithm and manipulating the classifier's model to allow decision information to be represented compactly. We have developed a set of software tools to help automate the process of converting training data to synthesizable hardware and to provide a means of trading off between accuracy and resource utilization. The Xilinx Virtex 5-LX implementation requires two orders of magnitude less memory than the original algorithm. At 166MB/s (80X the software) the hardware implementation is able to achieve Gigabit network throughput at the same accuracy as the original algorithm.

More Details

FCLib: The Feature Characterization Library

Gentile, Ann C.; Kegelmeyer, William P.; Ulmer, Craig D.

The Feature Characterization Library (FCLib) is a software library that simplifies the process of interrogating, analyzing, and understanding complex data sets generated by finite element applications. This document provides an overview of the library, a description of both the design philosophy and implementation of the library, and examples of how the library can be utilized to extract understanding from raw datasets.

More Details

FPGAs in High Perfomance Computing: Results from Two LDRD Projects

Underwood, Keith; Ulmer, Craig D.; Thompson, David C.; Hemmert, Karl S.

Field programmable gate arrays (FPGAs) have been used as alternative computational de-vices for over a decade; however, they have not been used for traditional scientific com-puting due to their perceived lack of floating-point performance. In recent years, there hasbeen a surge of interest in alternatives to traditional microprocessors for high performancecomputing. Sandia National Labs began two projects to determine whether FPGAs wouldbe a suitable alternative to microprocessors for high performance scientific computing and,if so, how they should be integrated into the system. We present results that indicate thatFPGAs could have a significant impact on future systems. FPGAs have thepotentialtohave order of magnitude levels of performance wins on several key algorithms; however,there are serious questions as to whether the system integration challenge can be met. Fur-thermore, there remain challenges in FPGA programming and system level reliability whenusing FPGA devices.4 AcknowledgmentArun Rodrigues provided valuable support and assistance in the use of the Structural Sim-ulation Toolkit within an FPGA context. Curtis Janssen and Steve Plimpton provided valu-able insights into the workings of two Sandia applications (MPQC and LAMMPS, respec-tively).5

More Details

An fpga-based network intrusion detection system with on-chip network interfaces

International Journal of Electronics

Clark, C.R.; Ulmer, Craig D.; Schimmel, D.E.

Network intrusion detection systems (NIDS) are critical network security tools that help protect computer installations from malicious users. Traditional software-based NIDS architectures are becoming strained as network data rates increase and attacks intensify in volume and complexity. In recent years, researchers have proposed using FPGAs to perform the computationally-intensive components of intrusion detection analysis. In this work, we present a new NIDS architecture that integrates the network interface hardware and packet analysis hardware into a single FPGA chip. This integration enables a higher performance and more flexible NIDS platform. To demonstrate the benefits of this technique, we have implemented a complete and functional NIDS in a Xilinx Virtex II Pro FPGA that performs in-line packet analysis and filtering on multiple Gigabit Ethernet links using rules from the open-source Snort attack database. © 2006 Taylor & Francis Group, LLC.

More Details
Results 26–50 of 55
Results 26–50 of 55