Publications

Results 26–50 of 140

Search results

Jump to search filters

Sierra/SD - Theory Manual - 5.4

Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Stevens, B.L.; Lindsay, Payton L.; Plews, Julia A.; Vo, Johnathan V.; Bunting, Gregory B.; Walsh, Timothy W.; Joshi, Sidharth S.

Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural systems. This manual describes the theory behind many of the constructs in Sierra/SD. For a more detailed description of how to use Sierra/SD, we refer the reader to User's Manual. Many of the constructs in Sierra/SD are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Sierra/SD are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programmer_notes manual, the user's notes and of course the material in the open literature.

More Details

Sierra/SD - User's Manual - 5.4

Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Stevens, B.L.; Lindsay, Payton L.; Plews, Julia A.; Vo, Johnathan V.; Bunting, Gregory B.; Walsh, Timothy W.; Joshi, Sidharth S.

Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high-fidelity, validated models used in modal, vibration, static and shock analysis of weapons systems. This document provides a user's guide to the input for Sierra/SD. Details of input specifications for the different solution types, output options, element types and parameters are included. The appendices contain detailed examples, and instructions for running the software on parallel platforms.

More Details

Sierra/SD - User's Manual (V.5.2)

Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Stevens, B.L.; Lindsay, Payton L.; Hardesty, Sean H.; Vo, Johnathan V.; Bunting, Gregory B.; Walsh, Timothy W.

Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high-fidelity, validated models used in modal, vibration, static and shock analysis of weapons systems. This document provides a user’s guide to the input for Sierra/SD. Details of input specifications for the different solution types, output options, element types and parameters are included. The appendices contain detailed examples, and instructions for running the software on parallel platforms.

More Details

Sierra/SD - Theory Manual - 5.2

Stevens, B.L.; Crane, Nathan K.; Lindsay, Payton L.; Day, David M.; Walsh, Timothy W.; Dohrmann, Clark R.; Hardesty, Sean H.; Bunting, Gregory B.; Smith, Chandler B.

Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural systems. This manual describes the theory behind many of the constructs in Sierra/SD. For a more detailed description of how to use Sierra/SD, we refer the reader to User's Manual. Many of the constructs in Sierra/SD are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Sierra/SD are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programmer_notes manual, the user's notes and of course the material in the open literature.

More Details

Sierra/SD - Verification Test Manual - 5.2

Stevens, B.L.; Crane, Nathan K.; Lindsay, Payton L.; Day, David M.; Dohrmann, Clark R.; Hardesty, Sean H.; Bunting, Gregory B.; Walsh, Timothy W.; Smith, Chandler B.

This document presents tests from the Sierra Structural Mechanics verification test suite. Each of these tests is run nightly with the Sierra/SD code suite and the results of the test checked versus the correct analytic result. For each of the tests presented in this document the test setup, derivation of the analytic solution, and comparison of the Sierra/SD code results to the analytic solution is provided. This document can be used to confirm that a given code capability is verified or referenced as a compilation of example problems.

More Details

Sierra/SD - How To Manual - 5.2

Stevens, B.L.; Crane, Nathan K.; Lindsay, Payton L.; Hardesty, Sean H.; Day, David M.; Dohrmann, Clark R.; Bunting, Gregory B.; Walsh, Timothy W.

The How To Manual supplements the User’s Manual and the Theory Manual. The goal of the How To Manual is to reduce learning time for complex end to end analyses. These documents are intended to be used together. See the User’s Manual for a complete list of the options for a solution case. All the examples are part of the Sierra/SD test suite. Each runs as is. The organization is similar to the other documents: How to run, Commands, Solution cases, Materials, Elements, Boundary conditions, and then Contact. The table of contents and index are indispensable. The Geometric Rigid Body Modes section is shared with the Users Manual.

More Details

Sierra/SD - User's Manual

Bunting, Gregory B.; Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Ferri, Brian A.; Hardesty, Sean H.; Lindsay, Payton L.; Miller, Scott T.; Stevens, B.L.; Walsh, Timothy W.

Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high-fidelity, validated models used in modal, vibration, static and shock analysis of weapons systems. This document provides a user’s guide to the input for Sierra/SD. Details of input specifications for the different solution types, output options, element types and parameters are included. The appendices contain detailed examples, and instructions for running the software on parallel platforms.

More Details

Sierra/SD – Verification Test Manual – 5.0

Bunting, Gregory B.; Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Ferri, Brian A.; Hardesty, Sean H.; Lindsay, Payton L.; Miller, Scott T.; Stevens, B.L.; Walsh, Timothy W.

This document presents tests from the Sierra Structural Mechanics verification test suite. Each of these tests is run nightly with the Sierra/SD code suite and the results of the test checked versus the correct analytic result. For each of the tests presented in this document the test setup, derivation of the analytic solution, and comparison of the Sierra/SD code results to the analytic solution is provided. This document can be used to confirm that a given code capability is verified or referenced as a compilation of example problems.

More Details

Sierra/SD - Theory Manual

Bunting, Gregory B.; Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Ferri, Brian A.; Hardesty, Sean H.; Lindsay, Payton L.; Miller, Scott T.; Stevens, B.L.; Walsh, Timothy W.

Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural systems. This manual describes the theory behind many of the constructs in Sierra/SD. For a more detailed description of how to use Sierra/SD, we refer the reader to User’s Manual. Many of the constructs in Sierra/SD are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Sierra/SD are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programmer_notes manual, the user’s notes and of course the material in the open literature.

More Details

Sierra/SD - How To Manual, 5.0

Bunting, Gregory B.; Crane, Nathan K.; Day, David B.; Dohrmann, Clark R.; Ferri, Brian A.; Hardesty, Sean H.; Lindsay, Payton L.; Miller, Scott T.; Stevens, B.L.; Walsh, Timothy W.

The “how to” document guides the user through complicated aspects of software usage. It should supplement both the User’s manual and the Theory document, by providing examples and detailed discussion that reduce learning time for complex set ups. These documents are intended to be used together. We will not formally list all parameters for an input here – see the User’s manual for this. All the examples in the “How To” document are part of the Sierra/SD test suite, and each will run with no modification. The nature of this document casts together a number of rather unrelated procedures. Grouping them is difficult. Please try to use the table of contents and the index as a guide in finding the analyses of interest.

More Details

Novel strategies for modal-based structural material identification

Mechanical Systems and Signal Processing

Bunting, Gregory B.; Miller, Scott T.; Walsh, Timothy W.; Dohrmann, Clark R.; Aquino, Wilkins A.

In this work, we present modal-based methods for model calibration in structural dynamics, and address several key challenges in the solution of gradient-based optimization problems with eigenvalues and eigenvectors, including the solution of singular Helmholtz problems encountered in sensitivity calculations, non-differentiable objective functions caused by mode swapping during optimization, and cases with repeated eigenvalues. Unlike previous literature that relied on direct solution of the eigenvector adjoint equations, we present a parallel iterative domain decomposition strategy (Adjoint Computation via Modal Superposition with Truncation Augmentation) for the solution of the singular Helmholtz problems. For problems with repeated eigenvalues we present a novel Mode Separation via Projection algorithm, and in order to address mode swapping between inverse iterations we present a novel Injective mode ordering metric. We present the implementation of these methods in a massively parallel finite element framework with the ability to use measured modal data to extract unknown structural model parameters from large complex problems. A series of increasingly complex numerical examples are presented that demonstrate the implementation and performance of the methods in a massively parallel finite element framework [7,5], using gradient-based optimization techniques in the Rapid Optimization Library (ROL) [21].

More Details

SPECTRAL EQUIVALENCE OF LOW-ORDER DISCRETIZATIONS FOR HIGH-ORDER H(CURL) AND H(DIV) SPACES

SIAM Journal on Scientific Computing

Dohrmann, Clark R.

In this study, we present spectral equivalence results for high-order tensor product edge- and face-based finite elements for the H(curl) and H(div) function spaces. Specifically, we show for certain choices of shape functions that the mass and stiffness matrices of the high-order elements are spectrally equivalent to those for an assembly of low-order elements on the associated Gauss-Lobatto-Legendre mesh. Based on this equivalence, efficient preconditioners can be designed with favorable computational complexity. Numerical results are presented which confirm the theory and demonstrate the benefits of the equivalence results for overlapping Schwarz preconditioners.

More Details

Spectral Equivalence Properties of Higher-Order Tensor Product Finite Elements and Applications to Preconditioning

Dohrmann, Clark R.

In this study, we present spectral equivalence results for higher-order tensor product edge-, face- and interior-based finite elements. Specifically, we show for certain choices of shape functions that the mass and stiffness matrices of the higher-order elements are spectrally equivalent to those for an assembly of lowest-order elements on the associated Gauss-Lobatto-Legendre mesh. Based on this equivalence, efficient preconditioners can be designed with favorable computational complexity. Numerical results are presented which confirm the theory and demonstrate the benefits of the equivalence results for overlapping Schwarz preconditioners.

More Details

Sierra/SD - Theory Manual 4.58

Bunting, Gregory B.; David, Caroline K.; Dohrmann, Clark R.; Hardesty, Sean H.; Lindsay, Payton L.; Stevens, B.L.; Crane, Nathan K.

Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural systems. This manual describes the theory behind many of the constructs in Sierra/SD. For a more detailed description of how to use Sierra/SD, we refer the reader to User's Manual. Many of the constructs in Sierra/SD are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Sierra/SD are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programmer notes manual, the user's notes and of course the material in the open literature.

More Details

Sierra/SD--User's Manual - 4.58

Bunting, Gregory B.; Chen, Mark J.; Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Hardesty, Sean H.; Lindsay, Payton L.; Stevens, B.L.; Flicek, Robert C.; Munday, Lynn

Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high-fidelity, validated models used in modal, vibration, static and shock analysis of weapons systems. This document provides a user's guide to the input for Sierra/SD . Details of input specifications for the different solution types, output options, element types and parameters are included. The appendices contain detailed examples, and instructions for running the software on parallel platforms.

More Details

Sierra/SD-- How To Manual - 4.58

Bunting, Gregory B.; Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Ferri, Brian A.; Hardesty, Sean H.; Lindsay, Payton L.; Miller, Scott T.; Stevens, B.L.; Walsh, Timothy W.

The “how to” document is designed to help walk the analyst through difficult aspects of software usage. It should supplement both the User’s manual and the Theory document, by providing examples and detailed discussion that reduce learning time for complex set ups. These documents are intended to be used together. We will not formally list all parameters for an input here – see the User’s manual for this. All the examples in the “How To” document are part of the Sierra/SD test suite, and each will run with no modification. The nature of this document casts together a number of rather unrelated procedures. Grouping them is difficult. Please try to use the table of contents and the index as a guide in finding the analyses of interest.

More Details

Sierra/SD–Verification Test Manual - 4.58

Bunting, Gregory B.; Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Ferri, Brian A.; Hardesty, Sean H.; Lindsay, Payton L.; Miller, Scott T.; Stevens, B.L.; Walsh, Timothy W.

This document presents tests from the Sierra Structural Mechanics verification test suite. Each of these tests is run nightly with the Sierra/SD code suite and the results of the test checked versus the correct analytic result. For each of the tests presented in this document the test setup, derivation of the analytic solution, and comparison of the Sierra/SD code results to the analytic solution is provided. This document can be used to confirm that a given code capability is verified or referenced as a compilation of example problems.

More Details

Sierra/SD - Verification Test Manual - 4.56

Bunting, Gregory B.; Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Flicek, Robert C.; Hardesty, Sean H.; Lindsay, Payton L.; Stevens, B.L.

This document presents tests from the Sierra Structural Mechanics verification test suite. Each of these tests is run nightly with the Sierra/SD code suite and the results of the test checked versus the correct analytic result. For each of the tests presented in this document the test setup, derivation of the analytic solution, and comparison of the Sierra/SD code results to the analytic solution is provided. This document can be used to confirm that a given code capability is verified or referenced as a compilation of example problems.

More Details

Sierra/SD - Theory Manual - 4.56

Bunting, Gregory B.; Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Flicek, Robert C.; Hardesty, Sean H.; Lindsay, Payton L.; Stevens, B.L.

Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural systems. This manual describes the theory behind many of the constructs in Sierra/SD. For a more detailed description of how to use Sierra/SD, we refer the reader to Sierra/SD, User's Notes. Many of the constructs in Sierra/SD are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Sierra/SD are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programmer notes manual, the user's notes and of course the material in the open literature.

More Details

How To Manual - 4.56

Bunting, Gregory B.; Crane, Nathan K.; Day, David M.; Dohrmann, Clark R.; Ferri, Brian A.; Flicek, Robert C.; Hardesty, Sean H.; Lindsay, Payton L.; Miller, Scott T.; Stevens, B.L.; Walsh, Timothy W.

The "how to" document is designed to help walk the analyst through difficult aspects of software usage. It should supplement both the User's manual and the Theory document, by providing examples and detailed discussion that reduce learning time for complex set ups. These documents are intended to be used together. We will not formally list all parameters for an input here — see the User's manual for this. All the examples in the "How To" document are part of the Sierra/SD test suite, and each will run with no modification. The nature of this document casts together a number of rather unrelated procedures. Grouping them is difficult. Please try to use the table of contents and the index as a guide in finding the analyses of interest.

More Details

On Inexact Solvers for the Coarse Problem of BDDC

Lecture Notes in Computational Science and Engineering

Dohrmann, Clark R.; Pierson, Kendall H.; Widlund, Olof B.

In this study, we present Balancing Domain Decomposition by Constraints (BDDC) preconditioners for three-dimensional scalar elliptic and linear elasticity problems in which the direct solution of the coarse problem is replaced by a preconditioner based on a smaller vertex-based coarse space.

More Details
Results 26–50 of 140
Results 26–50 of 140