Publications

9 Results

Search results

Jump to search filters

Computational modeling of grain boundary segregation: A review

Computational Materials Science

Dingreville, Remi P.; Boyce, Brad B.; Hu, Chongze H.

Nearly all metals, alloys, ceramics, and their associated composites are polycrystalline in nature, with grain boundaries that separate well-defined crystalline regions that influence materials properties. In all but the most pure elemental systems, intentional solutes or impurities are present and can segregate to, or less commonly away from, the grain boundaries, in turn influencing boundary behavior, their stability, and associated materials properties. In some cases, grain-boundary segregation can also trigger “phase-like” structural transitions that dramatically alter the essential nature of the boundary. With the development of advanced electron microscopy techniques, researchers can directly observe grain-boundary structures and segregation with atomic precision. Despite such spatial resolution, the underlying mechanisms governing grain-boundary segregation remain difficult to characterize. As a result, computational modeling techniques such as density functional theory, molecular dynamics, mesoscale phase-field, continuum defect theory, and others are important complementary tools to experimental observations for studying grain-boundary segregation behavior. In conclusion, these computational methods offer the ability to explore the underlying formation mechanisms of grain-boundary segregation, elucidate complex segregation behavior, and provide insights into solutions to effectively controlling microstructure.

More Details

Discontinuous segregation patterning across disconnections

Acta Materialia

Dingreville, Remi P.; Hu, Chongze H.; Medlin, Douglas L.; Berbenni, Stephane

Twinning is a frequent deformation mechanism in nanocrystalline metals, and segregation of solute atoms at twin boundaries is a thermodynamic process that plays an important role in the stability and strengthening of these materials. In pristine, defect-free twin boundaries, solute segregation generally follows a single- or multilayer patterned coverage of solutes that is uniformly and symmetrically distributed at segregation sites across the boundary. However, when a disconnection, a type of interfacial line defect, is present at the twin boundary, we report a possible discontinuity of the segregation patterns across this defect for a broad range of binary alloys. The change of segregation pattern is explained by a break of the local symmetry across the disconnection terraces. The characteristics of this change are dictated by the orientation of the dislocation content sitting at the step region of the disconnection and its synergistic/antagonistic interactions with the step character. These findings not only advance our understanding of the origin of the interface segregation phenomena and the key contribution from interfacial defects, but they also shed light on applications for tailoring atomically precise interfacial structures to design alloys with emerging properties.

More Details

Accelerating phase-field predictions via recurrent neural networks learning the microstructure evolution in latent space

Computer Methods in Applied Mechanics and Engineering

Hu, Chongze H.; Martin, Shawn; Dingreville, Remi P.

The phase-field method is a popular modeling technique used to describe the dynamics of microstructures and their physical properties at the mesoscale. However, because in these simulations the microstructure is described by a system of continuous variables evolving both in space and time, phase-field models are computationally expensive. They require refined spatio-temporal discretization and a parallel computing approach to achieve a useful degree of accuracy. As an alternative, we present and discuss an accelerated phase-field approach which uses a recurrent neural network (RNN) to learn the microstructure evolution in latent space. We perform a comprehensive analysis of different dimensionality-reduction methods and types of recurrent units in RNNs. Specifically, we compare statistical functions combined with linear and nonlinear embedding techniques to represent the microstructure evolution in latent space. We also evaluate several RNN models that implement a gating mechanism, including the long short-term memory (LSTM) unit and the gated recurrent unit (GRU) as the microstructure-learning engine. We analyze the different combinations of these methods on the spinodal decomposition of a two-phase system. Our comparison reveals that describing the microstructure evolution in latent space using an autocorrelation-based principal component analysis (PCA) method is the most efficient. We find that the LSTM and GRU RNN implementations provide comparable accuracy with respect to the high-fidelity phase-field predictions, but with a considerable computational speedup relative to the full simulation. This study not only enhances our understanding of the performance of dimensionality reduction on the microstructure evolution, but it also provides insights on strategies for accelerating phase-field modeling via machine learning techniques.

More Details

Disconnection-Mediated Transition in Segregation Structures at Twin Boundaries

Journal of Physical Chemistry Letters

Hu, Chongze H.; Medlin, Douglas L.; Dingreville, Remi P.

Twin boundaries play an important role in the thermodynamics, stability, and mechanical properties of nanocrystalline metals. Understanding their structure and chemistry at the atomic scale is key to guide strategies for fabricating nanocrystalline materials with improved properties. We report an unusual segregation phenomenon at gold-doped platinum twin boundaries, which is arbitrated by the presence of disconnections, a type of interfacial line defect. By using atomistic simulations, we show that disconnections containing a stacking fault can induce an unexpected transition in the interfacial-segregation structure at the atomic scale, from a bilayer, alternating-segregation structure to a trilayer, segregation-only structure. This behavior is found for faulted disconnections of varying step heights and dislocation characters. Supported by a structural analysis and the classical Langmuir-McLean segregation model, we reveal that this phenomenon is driven by a structurally induced drop of the local pressure across the faulted disconnection accompanied by an increase in the segregation volume.

More Details
9 Results
9 Results