Active Polymer Composites for Detection of Abnormal Thermal and Optical Environments
Abstract not provided.
Abstract not provided.
Hydrogen getters were tested for use in storage of plutonium-bearing materials in accordance with DOE’s Criteria for Interim Safe Storage of Plutonium Bearing Materials. The original studies, documented in Sandia Report SAND2008-301530150095, included HiTop getter material aged for 3 months at 70°C. This material was aged for an additional 3 months for a total of 6 months at 70°C, and the performance of the getter was evaluated again and documented in Sandia Report SAND2008-301530151789P. This material was then aged for an additional 7 months for a total of 13 months at 70°C, and the performance of the getter under recombination and gettering conditions was evaluated. A sample of the 13 months aged getter was exposed to radiation at SRNL, and the performance of this sample was also evaluated. The results of the 13 months study is reported in SAND2008-301530157165P. The HiTop material was aged for an additional 5 months for a total of 18 months. This material was split into two samples with the second sample being exposed to radiation at SRNL. The performance of the 18 month aged HiTop material is covered in this report.
Hydrogen getters were tested for use in storage of plutonium-bearing materials in accordance with DOE's Criteria for Interim Safe Storage of Plutonium Bearing Materials. The original studies, documented in Sandia Report SAND2007-0095, included HiTop getter material aged for 3 months at 70°C. This material was aged for an additional 3 months for a total of 6 months at 70°C, and the performance of the getter was evaluated again and documented in Sandia Report SAND2007-1789P. This material was then aged for an additional 7 months for a total of 13 months at 70°C, and the performance of the getter under recombination and gettering conditions was evaluated. A sample of the 13 months aged getter was exposed to radiation at SRNL, and the performance of this sample was also evaluated. The results of the 13 months study is reported in SAND2007-7165P. The HiTop material was aged for an additional 5 months for a total of 18 months. This material was split into two samples with the second sample being exposed to radiation at SRNL. The performance of the 18 month aged HiTop material is covered in this report. The 18-month aged material showed similar performance under gettering conditions to the previously aged material: the recombination rate is well above the required rate of 45 std. cc H2/h, and the gettering reaction occurs in the absence of oxygen at a slower rate. Both pressure drop measurements and 1H NMR analyses support these conclusions. 1H NMR analyses show extremely minor changes in the 18-month aged material, which can be possibly attributed to slight decomposition of the HiTop material or absorption of contaminants during the aging process.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Legacy plutonium-bearing materials are stored in shipping containers at the Savannah River Site (SRS) until their final disposition can be determined. This material has been stabilized and is maintained per the DOE’s standard for long-term storage of Pu-containing materials, DOE-STD-3013. As a part of its ongoing storage mission, Washington Savannah River Company’s (WSRC) Nuclear Materials Management (NMM) organization is tasked with a surveillance program that will ensure these materials have remained in their expected condition over the several years of storage. Information from this program will be used by multiple entities to further validate the safe storage of Pu-bearing materials per DOE-STD-3013. Part of the program entails cutting open selected 3013 containers and sampling the materials inside. These samples will then be analyzed by Savannah River National Laboratory (SRNL). The remaining material not used for samples will then be repackaged in non-3013 containers to be placed back into shipping packages for storage until disposition at SRS. These repackaged materials will be stored per the requirements of DOE’s Criteria for Interim Safe Storage of Plutonium Bearing Materials (ISSC).
Hydrogen getters were tested for use in storage of plutonium-bearing materials in accordance with DOE's Criteria for Interim Safe Storage of Plutonium Bearing Materials. The hydrogen getter HITOP was aged for 3 months at 70 C and tested under both recombination and hydrogenation conditions at 20 and 70 C; partially saturated and irradiated aged getter samples were also tested. The recombination reaction was found to be very fast and well above the required rate of 45 std. cc H2h. The gettering reaction, which is planned as the backup reaction in this deployment, is slower and may not meet the requirements alone. Pressure drop measurements and {sup 1}H NMR analyses support these conclusions. Although the experimental conditions do not exactly replicate the deployment conditions, the results of our conservative experiments are clear: the aged getter shows sufficient reactivity to maintain hydrogen concentrations below the flammability limit, between the minimum and maximum deployment temperatures, for three months. The flammability risk is further reduced by the removal of oxygen through the recombination reaction. Neither radiation exposure nor thermal aging sufficiently degrades the getter to be a concern. Future testing to evaluate performance for longer aging periods is in progress.