Miniature all-solid-state heterostructure nanowire Li-ion batteries as a tool for engineering and structural diagnostics of nanoscale electrochemical processes
Nanoscale
Abstract not provided.
Nanoscale
Abstract not provided.
Abstract not provided.
Journal of Materials Chemistry
Abstract not provided.
Electro-optical organic materials hold great promise for the development of high-efficiency devices based on exciton formation and dissociation, such as organic photovoltaics (OPV) and organic light-emitting devices (OLEDs). However, the external quantum efficiency (EQE) of both OPV and OLEDs must be improved to make these technologies economical. Efficiency rolloff in OLEDs and inability to control morphology at key OPV interfaces both reduce EQE. Only by creating materials that allow manipulation and control of the intimate assembly and communication between various nanoscale excitonic components can we hope to first understand and then engineer the system to allow these materials to reach their potential. The aims of this proposal are to: 1) develop a paradigm-changing platform for probing excitonic processes composed of Crystalline Nanoporous Frameworks (CNFs) infiltrated with secondary materials (such as a complimentary semiconductor); 2) use them to probe fundamental aspects of excitonic processes; and 3) create prototype OPVs and OLEDs using infiltrated CNF as active device components. These functional platforms will allow detailed control of key interactions at the nanoscale, overcoming the disorder and limited synthetic control inherent in conventional organic materials. CNFs are revolutionary inorganic-organic hybrid materials boasting unmatched synthetic flexibility that allow tuning of chemical, geometric, electrical, and light absorption/generation properties. For example, bandgap engineering is feasible and polyaromatic linkers provide tunable photon antennae; rigid 1-5 nm pores provide an oriented, intimate host for triplet emitters (to improve light emission in OLEDs) or secondary semiconducting polymers (creating a charge-separation interface in OPV). These atomically engineered, ordered structures will enable critical fundamental questions to be answered concerning charge transport, nanoscale interfaces, and exciton behavior that are inaccessible in disordered systems. Implementing this concept also creates entirely new dimensions for device fabrication that could both improve performance, increase durability, and reduce costs with unprecedented control of over properties. This report summarizes the key results of this project and is divided into sections based on publications that resulted from the work. We begin in Section 2 with an investigation of light harvesting and energy transfer in a MOF infiltrated with donor and acceptor molecules of the type typically used in OPV devices (thiophenes and fullerenes, respectively). The results show that MOFs can provide multiple functions: as a light harvester, as a stabilizer and organizer or the infiltrated molecules, and as a facilitator of energy transfer. Section 3 describes computational design of MOF linker groups to accomplish light harvesting in the visible and facilitate charge separation and transport. The predictions were validated by UV-visible absorption spectroscopy, demonstrating that rational design of MOFs for light-harvesting purposes is feasible. Section 4 extends the infiltration concept discussed in Section to, which we now designate as "Molecule@MOF" to create an electrically conducting framework. The tailorability and high conductivity of this material are unprecedented, meriting publication in the journal Science and spawning several Technical Advances. Section 5 discusses processes we developed for depositing MOFs as thin films on substrates, a critical enabling technology for fabricating MOF-based electronic devices. Finally, in Section 6 we summarize results showing that a MOF thin film can be used as a sensitizer in a DSSC, demonstrating that MOFs can serve as active layers in excitonic devices. Overall, this project provides several crucial proofs-of- concept that the potential of MOFs for use in optoelectronic devices that we predicted several years ago [ 3 ] can be realized in practice.
Nanoletters
Abstract not provided.
Abstract not provided.
AIP Advances
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Nature Chemistry.
Abstract not provided.
Proposed for publication in Nature Materials.
Abstract not provided.
Proceedings of SPIE - The International Society for Optical Engineering
We report the first observation of coherent plasmon emission of THz radiation from arrays of semiconductor nanowires. The THz signal strength from InAs nanowires is comparable to a planar substrate, indicating the nanowires are highly efficient emitters. This is explained by the preferential orientation of plasma motion to the wire surface, which overcomes radiation trapping by total-internal reflection. Using a bulk Drude model, we identify the average donor density and mobility in the nanowires in a non-contact manner. Contact IV transconductance measurements provide order of magnitude agreement with values obtained from the THz spectra. © 2009 SPIE.
Abstract not provided.
Proposed for publication in Physical Review Letters.
Abstract not provided.
IEEE Transactions on Nanotechnology
We report on the fabrication and characterization of large-area 2-D square arrays of subwavelength holes in Ag and Al films. Fabrication is based on thermal nanoimprint lithography and metal evaporation, without the need for etching, and is compatible with low-cost, large-scale production. Reflectance spectra for these arrays display an intensity minimum whose amplitude, center wavelength, and line width depend on the geometry of the array and the reflectivity of the metal film. By placing various fluids in contact with the subwavelength aperture arrays, we observe that the center wavelength of the reflectance minimum varies linearly with the refractive index of the fluid with a sensitivity of over 500 nm per refractive index unit. The surface plasmon theory is used to predict sensitivities to refractive index change with accuracies better than 0.5%. © 2008 IEEE.
Abstract not provided.
Journal of Physical Chemistry C
The high surface to volume ratio of nanowires makes them attractive for exploiting exotic materials properties and nanoengineering new device structures. To realize these goals, a fundamental understanding of the morphology and growth of the nanowires must be attained in three dimensions, because a two-dimensional projection image of these complex three-dimensional nanomaterials is not sufficient to describe their properties. Scanning transmission electron tomography is used here to obtain three-dimensional tomograms of GaN/AIN core-shell nanowires. This technique reveals the overall morphology and triangular shape of the nanowires, as well as their relation to the catalyst particle, with a resolution of ∼1 nm in all three spatial dimensions. Defects that appear to be in the core of the nanowires in two-dimensional images are shown to be surface defects induced during growth, demonstrating the importance of this three-dimensional technique in analyzing nanomaterials. © 2008 American Chemical Society.
J. Vac. Sci. Technol. B
Abstract not provided.
Abstract not provided.
The Journal of Vacuum Science and Technology B
Abstract not provided.
Optics Express
We present the design, fabrication, and testing of a microelectromechanical systems (MEMS) light modulator based on pixels patterned with periodic nanohole arrays. Flexure-suspended silicon pixels are patterned with a two dimensional array of 150 nm diameter nanoholes using nanoimprint lithography. A top glass plate assembled above the pixel array is used to provide a counter electrode for electrostatic actuation. The nanohole pattern is designed so that normally-incident light is coupled into an in-plane grating resonance, resulting in an optical stop-band at a desired wavelength. When the pixel is switched into contact with the top plate, the pixel becomes highly reflective. A 3:1 contrast ratio at the resonant wavelength is demonstrated for gratings patterned on bulk Si substrates. The switching time is 0.08 ms and the switching voltage is less than 15V. © 2008 Optical Society of America.
Abstract not provided.
Journal of Nanophotonics
Optical filters based on resonant gratings have spectral characteristics that are lithographically defined. Nanoimprint lithography is a relatively new method for producing large area gratings with sub-micron features. Computational modeling using rigorous coupled-wave analysis allows gratings to be designed to yield sharp reflectance maxima and minima. Combining these gratings with microfluidic channels and micromechanical actuators produced using micro electromechanical systems (MEMS) technology forms the basis for producing tunable filters and other wavelength selective elements. These devices achieve tunable optical characteristics by varying the index of refraction on the surface of the grating. Coating the grating surface with water creates a 33% change in the resonant wavelength whereas bringing a grating into contact with a quartz surface shifts the resonant wavelength from 558 nm to 879 nm, a fractional change of 58%. The reflectivity at a single wavelength can be varied by approximately a factor of three. Future applications of these devices may include tunable filters or optical modulators. © 2008 Society of Photo-Optical Instrumentation Engineers.
Abstract not provided.
Abstract not provided.