Publications

67 Results

Search results

Jump to search filters

First-order crosstalk mitigation in parallel quantum gates driven with multi-photon transitions

Applied Physics Letters

Chow, Matthew N.; Yale, Christopher G.; Grinevich, Ashlyn D.; Ivory, Megan K.; Lobser, Daniel L.; Revelle, Melissa R.; Clark, Susan M.

We demonstrate an order of magnitude reduction in the sensitivity to optical crosstalk for neighboring trapped-ion qubits during simultaneous single-qubit gates driven with individual addressing beams. Gates are implemented via two-photon Raman transitions, where crosstalk is mitigated by offsetting the drive frequencies for each qubit to avoid first-order crosstalk effects from inter-beam two-photon resonance. The technique is simple to implement, and we find that phase-dependent crosstalk due to optical interference is reduced on the most impacted neighbor from a maximal fractional rotation error of 0.185 ( 4 ) without crosstalk mitigation to ≤ 0.006 with the mitigation strategy. Furthermore, we characterize first-order crosstalk in the two-qubit gate and avoid the resulting rotation errors for the arbitrary-axis Mølmer-Sørensen gate via a phase-agnostic composite gate. Finally, we demonstrate holistic system performance by constructing a composite CNOT gate using the improved single-qubit gates and phase-agnostic two-qubit gate. This work is done on the Quantum Scientific Computing Open User Testbed; however, our methods are widely applicable for individual addressing Raman gates and impose no significant overhead, enabling immediate improvement for quantum processors that incorporate this technique.

More Details

Sample-efficient verification of continuously-parameterized quantum gates for small quantum processors

Quantum

Shaffer, Ryan; Ren, Hang; Dyrenkova, Emiliia; Yale, Christopher G.; Lobser, Daniel L.; Grinevich, Ashlyn D.; Chow, Matthew N.; Revelle, Melissa R.; Clark, Susan M.; Haffner, Hartmut

Most near-term quantum information processing devices will not be capable of implementing quantum error correction and the associated logical quantum gate set. Instead, quantum circuits will be implemented directly using the physical native gate set of the device. These native gates often have a parameterization (e.g., rotation angles) which provide the ability to perform a continuous range of operations. Verification of the correct operation of these gates across the allowable range of parameters is important for gaining confidence in the reliability of these devices. In this work, we demonstrate a procedure for sample-efficient verification of continuously-parameterized quantum gates for small quantum processors of up to approximately 10 qubits. This procedure involves generating random sequences of randomly-parameterized layers of gates chosen from the native gate set of the device, and then stochastically compiling an approximate inverse to this sequence such that executing the full sequence on the device should leave the system near its initial state. We show that fidelity estimates made via this technique have a lower variance than fidelity estimates made via cross-entropy benchmarking. This provides an experimentally-relevant advantage in sample efficiency when estimating the fidelity loss to some desired precision. We describe the experimental realization of this technique using continuously-parameterized quantum gate sets on a trapped-ion quantum processor from Sandia QSCOUT and a superconducting quantum processor from IBM Q, and we demonstrate the sample efficiency advantage of this technique both numerically and experimentally.

More Details

Characterizing and mitigating coherent errors in a trapped ion quantum processor using hidden inverses

Quantum

Majumder, Swarnadeep; Yale, Christopher G.; Morris, Titus; Lobser, Daniel L.; Grinevich, Ashlyn D.; Chow, Matthew N.; Revelle, Melissa R.; Clark, Susan M.; Pooser, Raphael C.

Quantum computing testbeds exhibit high-fidelity quantum control over small collections of qubits, enabling performance of precise, repeatable operations followed by measurements. Currently, these noisy intermediate-scale devices can support a sufficient number of sequential operations prior to decoherence such that near term algorithms can be performed with proximate accuracy (like chemical accuracy for quantum chemistry problems). While the results of these algorithms are imperfect, these imperfections can help bootstrap quantum computer testbed development. Demonstrations of these algorithms over the past few years, coupled with the idea that imperfect algorithm performance can be caused by several dominant noise sources in the quantum processor, which can be measured and calibrated during algorithm execution or in post-processing, has led to the use of noise mitigation to improve typical computational results. Conversely, benchmark algorithms coupled with noise mitigation can help diagnose the nature of the noise, whether systematic or purely random. Here, we outline the use of coherent noise mitigation techniques as a characterization tool in trapped-ion testbeds. We perform model-fitting of the noisy data to determine the noise source based on realistic physics focused noise models and demonstrate that systematic noise amplification coupled with error mitigation schemes provides useful data for noise model deduction. Further, in order to connect lower level noise model details with application specific performance of near term algorithms, we experimentally construct the loss landscape of a variational algorithm under various injected noise sources coupled with error mitigation techniques. This type of connection enables application-aware hardware code-sign, in which the most important noise sources in specific applications, like quantum chemistry, become foci of improvement in subsequent hardware generations.

More Details

Microfabricated Devices and Ion Trapping Capabilities

Revelle, Melissa R.

Next generation ion traps will likely need to support tens if not hundreds of ions in order to achieve several logical qubits. As we scale to those sizes, the same problems we face now – rf dissipation, control I/O, and optical access – will only grow and become more complicated. While many of these challenges can potentially be solved with technology integration, independently researching the feasibility of that integration and other solutions may help reduce the time and risk in scaling up to larger traps, by testing on smaller less complex devices. We should also consider other fabrication techniques that may help scale to larger devices, such as: through-substrate-vias (TSVs), different metal coatings, exotic rf routing, on chip laser sources, or even a secondary macroscopic trap to reload ions from. To have these technologies ready for full scale integration when we need them, ion traps with some of these capabilities need to be produced now. Developing the rigorous fabrication methods for producing reliable traps takes time and experimentation. We propose developing larger ion traps and reliable integrated technology in conjunction to make both available faster.

More Details

QSCOUT Progress Report, June 2022 [Quantum Scientific Computing Open User Testbed]

Clark, Susan M.; Norris, Haley R.; Landahl, Andrew J.; Yale, Christopher G.; Lobser, Daniel L.; Van Der Wall, Jay W.; Revelle, Melissa R.

Quantum information processing has reached an inflection point, transitioning from proof-of-principle scientific experiments to small, noisy quantum processors. To accelerate this process and eventually move to fault-tolerant quantum computing, it is necessary to provide the scientific community with access to whitebox testbed systems. The Quantum Scientific Computing Open User Testbed (QSCOUT) provides scientists unique access to an innovative system to help advance quantum computing science.

More Details

In situ detection of RF breakdown on microfabricated surface ion traps

Journal of Applied Physics

Wilson, Joshua M.; Tilles, Julia N.; Haltli, Raymond A.; Ou, Eric; Blain, Matthew G.; Clark, Susan M.; Revelle, Melissa R.

We report microfabricated surface ion traps are a principal component of many ion-based quantum information science platforms. The operational parameters of these devices are pushed to the edge of their physical capabilities as the experiments strive for increasing performance. When the applied radio-frequency (RF) voltage is increased excessively, the devices can experience damaging electric discharge events known as RF breakdown. We introduce two novel techniques for in situ detection of RF breakdown, which we implemented while characterizing the breakdown threshold of surface ion traps produced at Sandia National Laboratories. In these traps, breakdown did not always occur immediately after increasing the RF voltage, but often minutes or even hours later. This result is surprising in the context of the suggested mechanisms for RF breakdown in vacuum. Additionally, the extent of visible damage caused by breakdown events increased with the applied voltage. To minimize the probability for damage when RF power is first applied to a device, our results strongly suggest that the voltage should be ramped up over the course of several hours and monitored for breakdown.

More Details

Batching Circuits to Reduce Compilation in Quantum Control Hardware

Proceedings - 2022 IEEE International Conference on Quantum Computing and Engineering, QCE 2022

Grinevich, Ashlyn D.; Lobser, Daniel L.; Yale, Christopher G.; Van Der Wall, Jay W.; Maupin, Oliver G.; Goldberg, Joshua D.; Chow, Matthew N.; Revelle, Melissa R.; Clark, Susan M.

At Sandia National Laboratories, QSCOUT (the Quantum Scientific Computing Open User Testbed) is an ion-trap based quantum computer built for the purpose of allowing users low-level access to quantum hardware. Commands are executed on the hardware using Jaqal (Just Another Quantum Assembly Language), a programming language designed in-house to support the unique capabilities of QSCOUT. In this work, we describe a batching implementation of our custom software that speeds the experimental run-time through the reduction of communication and upload times. Reducing the code upload time during experimental runs improves system performance by mitigating the effects of drift. We demonstrate this implementation through a set of quantum chemistry experiments using a variational quantum eigensolver (VQE). While developed specifically for this testbed, this idea finds application across many similar experimental platforms that seek greater hardware control or reduced overhead.

More Details

Hybrid MEMS-CMOS ion traps for NISQ computing

Quantum Science and Technology

Blain, Matthew G.; Haltli, Raymond A.; Maunz, P.; Nordquist, Christopher N.; Revelle, Melissa R.; Stick, Daniel L.

Surging interest in engineering quantum computers has stimulated significant and focused research on technologies needed to make them manufacturable and scalable. In the ion trap realm this has led to a transition from bulk three-dimensional macro-scale traps to chip-based ion traps and included important demonstrations of passive and active electronics, waveguides, detectors, and other integrated components. At the same time as these technologies are being developed the system sizes are demanding more ions to run noisy intermediate scale quantum (NISQ) algorithms, growing from around ten ions today to potentially a hundred or more in the near future. To realize the size and features needed for this growth, the geometric and material design space of microfabricated ion traps must expand. In this paper we describe present limitations and the approaches needed to overcome them, including how geometric complexity drives the number of metal levels, why routing congestion affects the size and location of shunting capacitors, and how RF power dissipation can limit the size of the trap array. We also give recommendations for future research needed to accommodate the demands of NISQ scale ion traps that are integrated with additional technologies.

More Details

Engineering the Quantum Scientific Computing Open User Testbed

IEEE Transactions on Quantum Engineering

Clark, Susan M.; Lobser, Daniel L.; Revelle, Melissa R.; Yale, Christopher G.; Bossert, David B.; Grinevich, Ashlyn D.; Chow, Matthew N.; Hogle, Craig W.; Ivory, Megan K.; Pehr, Jessica; Salzbrenner, Bradley S.; Stick, Daniel L.; Sweatt, W.C.; Wilson, Joshua M.; Winrow, Edward G.; Maunz, Peter

The Quantum Scientific Computing Open User Testbed (QSCOUT) at Sandia National Laboratories is a trapped-ion qubit system designed to evaluate the potential of near-term quantum hardware in scientific computing applications for the U.S. Department of Energy and its Advanced Scientific Computing Research program. Similar to commercially available platforms, it offers quantum hardware that researchers can use to perform quantum algorithms, investigate noise properties unique to quantum systems, and test novel ideas that will be useful for larger and more powerful systems in the future. However, unlike most other quantum computing testbeds, the QSCOUT allows both quantum circuit and low-level pulse control access to study new modes of programming and optimization. The purpose of this article is to provide users and the general community with details of the QSCOUT hardware and its interface, enabling them to take maximum advantage of its capabilities.

More Details

Detecting and tracking drift in quantum information processors

Nature Communications

Proctor, Timothy J.; Revelle, Melissa R.; Nielsen, Erik N.; Rudinger, Kenneth M.; Lobser, Daniel L.; Maunz, Peter; Blume-Kohout, Robin J.; Young, Kevin C.

If quantum information processors are to fulfill their potential, the diverse errors that affect them must be understood and suppressed. But errors typically fluctuate over time, and the most widely used tools for characterizing them assume static error modes and rates. This mismatch can cause unheralded failures, misidentified error modes, and wasted experimental effort. Here, we demonstrate a spectral analysis technique for resolving time dependence in quantum processors. Our method is fast, simple, and statistically sound. It can be applied to time-series data from any quantum processor experiment. We use data from simulations and trapped-ion qubit experiments to show how our method can resolve time dependence when applied to popular characterization protocols, including randomized benchmarking, gate set tomography, and Ramsey spectroscopy. In the experiments, we detect instability and localize its source, implement drift control techniques to compensate for this instability, and then demonstrate that the instability has been suppressed.

More Details

Diagnosing and Destroying Non-Markovian Noise

Young, Kevin; Bartlett, Stephen; Blume-Kohout, Robin J.; Gamble, John K.; Lobser, Daniel L.; Maunz, Peter; Nielsen, Erik N.; Proctor, Timothy J.; Revelle, Melissa R.; Rudinger, Kenneth M.

Nearly every protocol used to analyze the performance of quantum information processors is based on an assumption that the errors experienced by the device during logical operations are constant in time and are insensitive to external contexts. This assumption is pervasive, rarely stated, and almost always wrong. Quantum devices that do behave this way are termed "Markovian:' but nearly every system we have ever probed has displayed drift or crosstalk or memory effects they are all non-Markovian. Strong non-Markovianity introduces spurious effects in characterization protocols and violates assumptions of the fault-tolerance threshold theorems. This SAND report details a three year laboratory-directed research and development (LDRD) project entitled, "Diagnosing and Destroying non-Markovian Noise in Quantum Information Processors." This program was initiated to build tools to study non-Markovian dynamics and quantum systems and develop robust methodologies for eliminating it. The program achieved a number of notable successes, including the first statistically rigorous protocol for identifying and characterizing drift in quantum systems, a formalism for modeling memory effects in quantum devices, and the successful suppression of drift in a Sandia trapped-ion quantum processor.

More Details

A platform for quantum information and large-scale entanglement with Rydberg atoms in programmable optical potentials

Revelle, Melissa R.; Martin, Michael J.; Biedermann, Grant B.

Large-scale quantum systems with controllable interactions are important for understanding complex phenomena in nature, and are the basis for advanced quantum technologies. Realizing a controllable platform for controlling, understanding, and ultimately harnessing the entanglement is an outstanding challenge in quantum science. This project demonstrated reconfigurable arrays of individually-trapped ultracold atoms, thus realizing a platform that could demonstrate large-scale quantum entanglement with the addition of strong inter-atomic interactions. Arrays of more than 50 trap sites were formed via digital holography and a high-numerical aperture imaging system that featured in-situ trap diagnostics and single-atom imaging resolution. We further discovered a new implementation of a controlled-phase gate that utilized coherent excitation to Rydberg states. This method will enable robust entanglement protocols in many-atom systems such as the one developed here.

More Details
67 Results
67 Results