Publications

2 Results

Search results

Jump to search filters

Local modeling for FRF estimation with noisy input measurements

Journal of Sound and Vibration

Coletti, Keaton; Carter, Steven; Schultz, Ryan S.

The frequency response function (FRF) is an essential means by which dynamic systems are qualified. In recent years, local modeling approaches have been extensively researched and shown to significantly outperform traditional FRF estimators. However, the standard local modeling approach assumes a perfectly-known system input, which results in biased FRF estimates in the presence of input noise. This paper derives a simple adjustment that can be used to improve FRF estimation for systems subjected to random excitation with noisy input data. This improvement can be implemented with little modification to standard local modeling algorithms and with little additional computational burden. The adjustment is coupled with a model selection procedure to avoid underfitting and overfitting. The methods presented in this paper are validated on a simulation, and they are shown to reduce bias due to input noise.

More Details

A Practitioner’s Guide to Local FRF Estimation

Conference Proceedings of the Society for Experimental Mechanics Series

Coletti, Keaton; Schultz, Ryan S.; Carter, Steven

Accurate measurement of frequency response functions is essential for system identification, model updating, and structural health monitoring. However, sensor noise and leakage cause variance and systematic errors in estimated FRFs. Low-noise sensors, windowing techniques, and intelligent experiment design can mitigate these effects but are often limited by practical considerations. This chapter is a guide to implementation of local modeling methods for FRF estimation, which have been extensively researched but are seldom used in practice. Theoretical background is presented, and a procedure for automatically selecting a parameterization and model order is proposed. Computational improvements are discussed that make local modeling feasible for systems with many input and output channels. The methods discussed herein are validated on a simulation example and two experimental examples: a multi-input, multi-output system with three inputs and 84 outputs and a nonlinear beam assembly. They are shown to significantly outperform the traditional H1 and HSVD estimators.

More Details
2 Results
2 Results