Publications Details

Publications / SAND Report

Verification and Benchmarking of High Fidelity Physics Peat Smoldering Model

Scott, Sarah N.; Kury, Matthew; Hakes Weston-Dawkes, Raquel S.P.

Peat fires are a major contributor to greenhouse gas emissions. The estimates of these emissions currently contain major uncertainties, due to the difficulty of determining the mass of peat burned in a fire. To address these uncertainties, we develop a computational physics-based peat smoldering model, which will be leveraged for high-fidelity quantitative estimates of peat fire emissions relevant to climate change. We present the verification of the 2-D axisymmetric model, a first step towards developing a full 3-D model. Verification includes the solution verification against a literature model for the 0-D smoldering case and verification of the heat transfer problem in 1-D and 2-D. Also presented is the effect of reaction mechanism on the smoldering model, for which we found a relatively simple three-step reaction mechanism is able to capture key behavior. These verification results provide the foundation for moving forward with validation against experimental data of the 2-D model.