Publications Details
Using Past Experience to Inform Management of Waste from Advanced Reactors and Advanced Fuels
Transportation of sodium-bonded spent fuel appears to present no unique challenges. Storage systems for this fuel should be designed to keep water, both liquid and vapor, from contacting the spent fuel. This fuel is not suitable for geologic disposal; therefore, how the spent sodium bonded fuel will be processed and the characteristics of the final disposal waste form(s) need to be considered. TRISO spent fuel appears to present no unique challenges in terms of transportation, storage, or disposal. If the graphite block is disposed of with the TRISO spent fuel, the 14C and 3H generated would need to be considered in the postclosure performance assessment. Salt waste from the molten salt reactor has yet to be transported or stored and might be a challenge to dispose of in a non-salt repositories. Like sodium-bonded spent fuel, how the salt will be treated and the characteristics of the final disposal waste form(s) need to be considered. In addition, radiolysis in the frozen salt waste form continues to generate gas, which presents a hazard. Both HALEU and high-enriched uranium SNF are currently being stored and transported by the DOE. Disposal of fuels with enrichments greater than 5% was included in the disposal plan for Yucca Mountain. The increased potential for criticality associated with the higher enriched SNF is mitigated by additional criticality control measures. Fuels that are similar to some ATFs were part of the disposal plan for Yucca Mountain. Some of the properties of these fuels (swelling, generation of 14C) would have to be considered as part of a postclosure performance assessment.