Publications Details
Uncertainty quantification of single and multi-parameter full-waveform inversion through a variational autoencoder
Elmeliegy, Abdelrahman; Sen, Mrinal; Harding, Jennifer L.; Yoon, Hongkyu
Uncertainty quantification (UQ) plays a vital role in addressing the challenges and limitations encountered in full-waveform inversion (FWI). Most UQ methods require parameter sampling which requires many forward and adjoint solves. This often results in very high computational overhead compared to traditional FWI, which hinders the practicality of the UQ for FWI. In this work, we develop an efficient UQ-FWI framework based on unsupervised variational autoencoder (VAE) to assess the uncertainty of single and multi-parameter FWI. The inversion operator is modeled using an encoder-decoder network. The input to the network is seismic shot gathers and the output are samples (distribution) of model parameters. We then use these samples to estimate the mean and standard deviation of each parameter population, which provide insights on the uncertainty in the inversion process. To speed up the UQ process, we carried out the reconstruction in an unsupervised learning approach. Moreover, we physics-constrained the network by injecting the FWI gradients during the backpropagation process, leading to better reconstruction. The computational cost of the proposed approach is comparable to the traditional autoencoder full-waveform inversion (AE-FWI), which is encouraging to be used to get further insight on the quality of the inversion. We apply this idea for synthetic data to show its potential in assessing uncertainty in multi-parameter FWI.