Publications Details

Publications / Journal Article

Towards performance-portability of the Albany Finite Element analysis code using the Kokkos library of Trilinos

Demeshko, Irina; Salinger, Andrew G.; Spotz, William S.; Tezaur, Irina K.; Guba, Oksana; Heroux, Michael A.

Performance portability on heterogeneous high-performance computing (HPC) systems is a major challenge faced today by code developers: parallel code needs to execute correctly as well as with high performance on machines with different architectures, operating systems, and software libraries. The Finite Element Method (FEM) is a popular and flexible method for discretizing partial differential equations arising in a wide variety of scientific, engineering, and industry applications that require HPC. This paper presents some preliminary results pertaining to our development of a performance portable implementation of the FEM-based Albany code. Performance portability is achieved using the Kokkos library of Trilinos. We present performance results for two different physics simulations modules in Albany: the Aeras global atmosphere dynamical code and the FELIX land-ice solver. As a result, numerical experiments show that our single code implementation gives reasonable performance across two multi-core/many-core architectures: NVIDIA GPUs and multi-core CPUs.