Publications Details

Publications / Journal Article

Thermochemistry of YBa(2)Cu(3-x)M(x)O(y) (M=Ni,Zn)

Rodriguez, M.A.

Many studies have investigated the behavior of transition metal dopants in the YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} 123 superconductors. Much of this research has focused on the effects of metal ions such as Co, Fe, Zn, Ni when they are substituted for the copper ions at Cu(1) and Cu(2) sites, commonly referred to as the chain and plane sites, respectively. Trivalent ions such as Co{sup +3} and Fe{sup +3}have been shown to behave similarly in their substitution effects, displaying site preference on the Cu(1) site [3-8]. This site preference has been established with the use of techniques such as neutron diffraction and Moessbauer spectroscopy [4,5]. Thermogravimetry, electron diffraction, and analysis of lattice parameters as a function of dopant also yield results consistent with those of the structural studies with respect to the chain site preference of both Co and Fe [3,4,6-8]. The very fast convergence of a and b lattice parameters to that of the tetragonal structure, occurring at x = 0.3 Co dopant (i.e. YBa{sub 2}Cu{sub 2.7}Co{sub 0.3}O{sub 7{minus}{delta}}) for high-oxygen-content samples, coupled with information derived from diffuse scattering and oxidation behavior of these samples, has been described in detail by several authors in terms of the Co and Fe ions creating ''microchains'' at Cu(1) sites within the 123 compound [4,7-8]. The Cu(1) site dopants decrease T{sub c} at a rate of 2 to 5 K/at. %, varying to some extent with site preference [4,9].