Publications Details

Publications / Conference

Synthetic infrared spectra for correlation spectroscopy

Sinclair, Michael B.

As a first step toward the development of a new remote sensing technique that the authors call holographic correlation spectroscopy, they demonstrate that diffractive optics can be used to synthesize the infrared spectra of real compounds. In particular, they have designed, fabricated, and characterized a diffractive element that successfully reproduces the major features f the spectrum of gaseous HF in the region between 3,600 cm{sup {minus}1} and 4,300 cm{sup {minus}1}. The reflection-mode diffractive optic consists of 4,096 lines, each 4.5 {micro}m wide, at 16 discrete depths relative to the substrate (from 0 to 1.2 {micro}m), and was fabricated on a silicon wafer using anisotropic reactive ion-beam etching in a four-mask-level process. The authors envision the use of diffractive elements of this type to replace the cumbersome reference cells of conventional correlation spectroscopy and thereby enable a new class of compact and versatile correlation spectrometers.