Publications Details

Publications / Conference

Simulation of large systems with neural networks

Paez, Thomas L.

Artificial neural networks (ANNs) have been shown capable of simulating the behavior of complex, nonlinear, systems, including structural systems. Under certain circumstances, it is desirable to simulate structures that are analyzed with the finite element method. For example, when we perform a probabilistic analysis with the Monte Carlo method, we usually perform numerous (hundreds or thousands of) repetitions of a response simulation with different input and system parameters to estimate the chance of specific response behaviors. In such applications, efficiency in computation of response is critical, and response simulation with ANNs can be valuable. However, finite element analyses of complex systems involve the use of models with tens or hundreds of thousands of degrees of freedom, and ANNs are practically limited to simulations that involve far fewer variables. This paper develops a technique for reducing the amount of information required to characterize the response of a general structure. We show how the reduced information can be used to train a recurrent ANN. Then the trained ANN can be used to simulate the reduced behavior of the original system, and the reduction transformation can be inverted to provide a simulation of the original system. A numerical example is presented.