Publications Details
Role of C, O and H in III-V nitrides
The light ion impurities C, 0 and H have been implanted or diffused into GaN and related compounds and their effect on the electrical properties of these materials measured by Hall, C-V and SIMS as a function of annealing temperatures from 300--11OO{degree}C. While C in as-grown GaN appears to create an acceptor under MOMBE conditions, implanted C shows no measurable activity. Similarly, implanted 0 does not show any shallow donor activity after annealing at {le}700{degree}C, but can create high resistivity regions (10{sup 6} {Omega}/{open_square}) in GaN, AlInN and InGaN for device isolation when annealed at 500--70O{degree}C. Finally, hydrogen is found to passivate shallow donor and acceptor states in GaN, InN. InAlN and InGaN, with dissociation of the neutral complexes at >450{degree}C. The liberated hydrogen does not leave the nitride films until much higher annealing temperatures (>800{degree}C). Typical reactivation energies are {approximately}2.0 eV for impurity-hydrogen complexes.