Publications Details

Publications / SAND Report

Response of GaN-Based Semiconductor Devices to Ion and Gamma Irradiation

Aguirre, Brandon A.; King, Joseph K.; Manuel, Jack E.; Vizkelethy, Gyorgy V.; Bielejec, Edward S.; Griffin, Patrick J.

GaN has electronic properties that make it an excellent material for the next generation of power electronics; however, its radiation hardening still needs further understanding before it is used in radiation environments. In this work we explored the response of commercial InGaN LEDs to two different radiation environments: ion and gamma irradiations. For ion irradiations we performed two types of irradiations at the Ion Beam Lab (IBL) at Sandia National Laboratories (SNL): high energy and end of range (EOR) irradiations. For gamma irradiations we fielded devices at the gamma irradiation facility (GIF) at SNL. The response of the LEDs to radiation was investigated by IV, light output and light output vs frequency measurements. We found that dose levels up to 500 krads do not degrade the electrical properties of the devices and that devices exposed to ion irradiations exhibit a linear and non- linear dependence with fluence for two different ranges of fluence levels. We also performed current injection annealing studies to explore the annealing properties of InGaN LEDs.