Publications Details
Realizing the Power of Near-Term Quantum Technologies
Moussa, Jonathan E.; Sarovar, Mohan S.; Luhman, Dwight R.; Lu, Tzu-Ming L.; Freeman, C.D.
This the final report of the LDRD project entitled "Realizing the Power of Near-Term Quantum Technologies", which was tasked with laying a theoretical foundation and computational framework for quantum simulation on quantum devices, to support both future Sandia efforts and the broader academic research effort in this area. The unifying theme of the project has been the desire to delineate more clearly the interface between existent classical computing resources that are vast and reliable with emerging quantum computing resources that will be scarce and unreliable for the foreseeable future. We seek to utilize classical computing resources to judge the efficacy of quantum devices for quantum simulation tasks and determine when they exceed the performance of classical devices, thereby achieving "quantum supremacy". This task was initially pursued by adapting the general concept of "parameter space compression" to quantum simulation. An inability to scale this analysis efficiently to large-scale simulations precipitated a shift in focus to assessing quantum supremacy of a specific quantum device, a 1D Bose gas trapped in an optical lattice, that was more amenable to large-scale analysis. We also seek to reconstruct unobserved information from limited observations of a quantum device to enhance their utility. This task was initially pursued as an application of maximum entropy reconstruction. Initial attempts to improve entropy approximations for direct reconstruction by free energy minimization proved to be more difficult than expected, and the focus shifted to the development of a quantum thermostat to facilitate indirect reconstruction by evolving a quantum Markov process. An efficient quantum thermostat is broadly useful for quantum state preparation in almost any quantum simulation task. In the middle of the project, a small opportunistic investment was made in a high-risk experiment to build an analog quantum simulator out of hole quantum dots in Ge/SiGe heterostructures. While a useful simulator was not produced, hole quantum dots at a Ge/SiGe interface have been successfully observed for the first time.