Publications Details

Publications / Conference Presenation

Reactive Power Control for Fast-Acting Voltage Regulation of Distributed Wind Turbines Using Reinforcement Learning

Jimenez Aparicio, Miguel J.; Darbali-Zamora, Rachid

Distribution systems may experience fast voltage swings in the matter of seconds from distributed energy resources, such as Wind Turbines Generators (WTG) and Photovoltaic (PV) inverters, due to their dependency on variable and intermittent wind speed and solar irradiance. This work proposes a WTG reactive power controller for fast voltage regulation. The controller is tested on a simulation model of a real distribution system. Real wind speed, solar irradiation, and load consumption data is used. The controller is based on a Reinforcement Learning Deep Deterministic Policy Gradient (DDPG) model that determines optimum control actions to avoid significant voltage deviations across the system. The controller has access to voltage measurements at all system buses. Results show that the proposed WTG reactive power controller significantly reduces system-wide voltage deviations across a large number of generation scenarios in order to comply with standardized voltage tolerances.