Publications Details

Publications / SAND Report

Quantifying Graph Uncertainty from Communication Data

Wendt, Jeremy D.; Field, Richard V.; Phillips, Cynthia A.; Prasadan, Arvind P.

Graphs are a widely used abstraction for representing a variety of important real-world problems including emulating cyber networks for situational awareness, or studying social networks to understand human interactions or pandemic spread. Communication data is often converted into graphs to help understand social and technical patterns in the underlying communication data. However, prior to this project, little work had been performed analyzing how best to develop graphs from such data. Thus, many critical, national security problems were being performed against graph representations of questionable quality. Herein, we describe our analyses that were precursors to our final statistically grounded technique for creating static graph snapshots from a stream of communication events. The first analyzes the statistical distribution properties of a variety of real-world communication datasets generally fit best by Pareto, log normal, and extreme value distributions. The second derives graph properties that can be estimated given the expected statistical distribution for communication events and the communication interval to be viewed node observability, edge observability, and expected accuracy of node degree. Unfortunately, as that final process is under review for publication, we can't publish it here at this time.