Publications Details
Proton exchange membrane fuel cell systems for airplane auxiliary power
Pratt, Joseph W.; Klebanoff, Leonard E.; Munoz-Ramos, Karina; Curgus, Dita B.; Schenkman, Benjamin L.
Deployed on a commercial airplane, proton exchange membrane (PEM) fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they could offer a performance advantage for the airplane when using today’s off-the-shelf technology. Through hardware analysis and thermodynamic simulation, we found that an additional fuel cell system on a commercial airplane is technically feasible using current technology. Recovery and on-board use of the heat and water that is generated by the fuel cell is an important method to increase the benefit of such a system. Although the PEM fuel cell generates power more efficiently than the gas turbine generators currently used, when considering the effect of the fuel cell system on the airplane’s overall performance we found that an overall performance penalty (i.e., the airplane will burn more jet fuel) would result if using current technology for the fuel cell and hydrogen storage. Although applied to a Boeing 787-type airplane, the method presented is applicable to other airframes as well.