Publications Details
Physics-Informed Machine Learning for Epidemiological Models
Martinez, Carianne M.; Jones, Jessica E.; Levin, Drew L.; Trask, Nathaniel A.; Finley, Patrick D.
One challenge of using compartmental SEIR models for public health planning is the difficulty in manually tuning parameters to capture behavior reflected in the real-world data. This team conducted initial, exploratory analysis of a novel technique to use physics-informed machine learning tools to rapidly develop data-driven models for physical systems. This machine learning approach may be used to perform data assimilation of compartment models which account for unknown interactions between geospatial domains (i.e. diffusion processes coupling across neighborhoods/counties/states/etc.). Results presented here are early, proof-of-concept ideas that demonstrate initial success in using a physically informed neural network (PINN) model to assimilate data in a compartmental epidemiology model. The results demonstrate initial success and warrant further research and development.