Publications Details
Nanomagnet-Based Physically Unclonable Functions
Lu, Tzu-Ming L.; Bussmann, Ezra B.
Physically unclonable functions are physical entities or devices that generate unique, unpredictable responses to inputs. They are important in many security applications, including encryption, authentication, anti-counterfeiting, etc. Physical unclonable functions are based on the unavoidable randomness in the manufacturing processes and are impossible to duplicate, even by the original manufacturer. In this project, we studied the feasibility of using hardened SmCo nanomagnets as the physical implementation of physically unclonable functions. Hardened SmCo nano-magnets were fabricated through a lift-off process as well as an etch-back process. The magnetization of these nano-magnets was mapped out as a function of shapes, dimensions, and processing conditions, using magnetic force microscopy. A systematic, uncontrolled bias in the polarity was identified. Attempts to mitigate this bias were made but were unsuccessful. Nevertheless, we found in the process that blanket SmCo films themselves may serve as the desired physically unclonable functions.