Publications Details

Publications / Conference Poster

Modeling empirical size relationships on load-displacement behavior and failure in threaded fasteners

Grimmer, Peter W.; Mersch, J.P.; Smith, J.A.; Veytskin, Yuriy B.; Susan, D.F.

A collaborative testing and analysis effort investigating the effects of threaded fastener size on load-displacement behavior and failure was conducted to inform the modeling of threaded connections. A series of quasistatic tension tests were performed on #00, #02, #04, #06 and #4 (1/4”) A286 stainless steel fasteners (NAS1351N00-4, NAS1352N02-6, NAS1352N04-8, NAS1352N06-10, and NAS1352N4-24, respectively) to provide calibration and validation data for the analysis portion of the study. The data obtained from the testing series reveals that the size of the fastener may influence the characteristic stress-strain response, as the failure strains and ultimate loads varied between the smaller (#00 and #02) and larger (#04, #06, and #4) fasteners. These results motivated the construction of high-fidelity finite element models to investigate the underlying mechanics of these responses. Two threaded fastener models, one with axisymmetric threads and the other with full 3D helical threads, were calibrated to subsets of the data to compare modeling approaches, analyze fastener material properties, and assess how well these calibrated properties extend to fasteners of varying sizes and if trends exist that can inform future best modeling practices. The modeling results are complemented with a microstructural analysis to further investigate the root cause of size effects observed in the experimentally obtained load-displacement curves. These analyses are intended to inform and guide reduced-order modeling approaches that can be incorporated in system level analyses of abnormal environments where modeling fidelity is limited and each component is not always testable, but models must still capture fastener behavior up to and including failure. This complimentary testing and analysis study identifies differences in the characteristic stress-strain response of varying sized fasteners, provides microstructural evidence to support these variations, evaluates our ability to extrapolate calibrated properties to different sized fasteners, and ultimately further educates the analysis community on the robustness of fastener modeling.