Publications Details

Publications / Conference

Microfabrication of membrane-based devices by deep-reactive ion etching (DRIE) of silicon

Manginell, Ronald

Deep reactive ion etching (DRIE) of silicon was utilized to fabricate dielectric membrane-based devices such as microhotplates, valves and flexural plate wave (FPW) devices. Through-wafer DRIE is characterized by fast etch rates ({approximately} 3 {micro}m/min), crystal orientation independence, vertical sidewall profiles and CMOS compatibility. Low-stress silicon nitride, a popular membrane material, has an appreciable DRIE etch rate. To overcome this limitations DRIE can be accompanied by a brief wet chemical etch. This approach has been demonstrated using KOH or HF/Nitric/Acetic etchants, both of which have significantly lower etch rates on silicon nitride than does DRIE. The DRIE etch properties of composite membranes consisting of silicon dioxide and silicon nitride layers are also under evaluation due to the higher DRIE selectivity to silicon dioxide.