Publications Details

Publications / SAND Report

Measuring and Extracting Activity from Time Series Data

Stracuzzi, David J.; Peterson, Matthew G.; Popoola, Gabriel A.

This report summarizes the results of an LDRD focused on developing and demonstrating statistically rigorous methods for analyzing and comparing complex activities from remote sensing data. Identifying activity from remote sensing data, particularly those that play out over time and span multiple locations, often requires extensive manual effort because of the variety of features that describe the activity and the required domain expertise. Our results suggest that there are some hidden challenges in extracting and representing activities in sensor data. In particular, we found that the variability in the underlying behaviors can be difficult to overcome statistically, and the report identifies several examples of the issue. We discuss key lessons learned in the context of the project, and finally conclude with recommendations on next steps and future work.