Publications Details

Publications / Presentation

Large bipolarons and superconductivity

Emin, David J.

Superconductivity has long been speculated to result from charge carriers paired as mobile charged bosons. Although the pairing of carriers as small (single-site) bipolarons is known, small bipolarons readily localize. By contrast, large (multi-site) bipolarons, in analogy with large polarons, should be mobile. It is shown that large bipolarons can form in solids with very displaceable ions, e.g., many oxides. Large-polaronic (but not small-polaronic) carriers produce absorption spectra like the carrier-induced absorptions observed in cuprates. Redistribution of the self-trapped carriers of large bipolarons among sites of carriers' molecular orbitals in response to atomic motions lowers phonon frequencies. The dependence of the phonon zero-point energy on the spatial distribution of large bipolarons produces a phonon-mediated attraction between them. This dynamic quantum-mechanical attraction fosters the condensation of large bipolarons into a liquid. Superconductivity can result when the large-bipolarons' groundstate remains liquid rather than solidifying. © 1995 Plenum Publishing Corporation.