Publications Details
Laboratory Hail Damage of Photovoltaic Modules: Electroluminescence and High-speed Digital Image Correlation Analysis
Digregorio, Steven J.; Braid, Jennifer L.; Shimizu, Michael A.; Hartley, James Y.
Hail poses a significant threat to photovoltaic (PV) systems due to the potential for both cell and glass cracking. This work experimentally investigates hail-related failures in Glass/Backsheet and Glass/Glass PV modules with varying ice ball diameters and velocities. Post-impact Electroluminescence (EL) imaging revealed the damage extent and location, while high-speed Digital Image Correlation (DIC) measured the out-of-plane module displacements. The findings indicate that impacts of 20 J or less result in negligible damage to the modules tested. The thinner glass in Glass/Glass modules cracked at lower impact energies (-25 J) than Glass/Backsheet modules (-40 J). Furthermore, both module types showed cell and glass cracking at lower energies when impacted at the module's edges compared to central impacts. At the time of presentation, we will use DIC to determine if out-of-plane displacements are responsible for the impact location discrepancy and provide more insights into the mechanical response of hail impacted modules. This study provides essential insights into the correlation between impact energy, impact location, displacements, and resulting damage. The findings may inform critical decisions regarding module type, site selection, and module design to contribute to more reliable PV systems.