Publications Details
Intrinsic and Extrinsic Factors Influencing the Dynamics of VO 2 Mott Oscillators
Kumar, Suhas K.; Bohaichuk, Stephanie M.
Oscillatory devices have gained significant interest recently as key components of computing systems based on biomimetic neuronal spiking. An understanding of the time scales underlying the spiking is essential for engineering fast, controllable, low energy devices. However, we find that the intrinsic dynamics of these devices are difficult to properly characterize, as they can be heavily influenced by the external circuitry used to measure them. Here we demonstrate these challenges using a VO2 Mott oscillator with a sub-100 nm effective size, achieved using a nanogap cut in a metallic carbon nanotube electrode. Given the nanoscale thermal volume of this device, it would be expected to exhibit rapid oscillations. However, due to external parasitics present within commonly used current sources, we see orders of magnitude slower dynamics. Here, we outline methods for determining when measurements are dominated by extrinsic factors and discuss the operating conditions under which intrinsic oscillation frequencies may be observed.