Publications Details
Impact of Modeling Assumptions on Traveling Wave Protective Relays in Hardware in the Loop
Hernandez Alvidrez, Javier H.; Jimenez Aparicio, Miguel J.; Reno, Matthew J.
As the legacy distance protection schemes are starting to transition from impedance-based to traveling wave (TW) time-based, it is important to perform diligent simulations prior to commissioning the TW relay. Since Control-Hardware-In-the-Loop (CHIL) simulations have recently become a common practice for power system research, this work aims to illustrate some limitations in the integration of commercially available TW relays in CHIL for transmission-level simulations. The interconnection of Frequency-Dependent (FD) with PI-modeled transmission lines, which is a common practice in CHIL, may lead to sharp reflections that ease the relaying task. However, modeling contiguous lines as FD, or the presence of certain shunt loads, may cover certain TW reflections. As a consequence, the fault location algorithm in the relay may lead to a wrong calculation. In this paper, a qualitative comparison of the performance of commercially available TW relay is carried out to show how the system modeling in CHIL may affect the fault location accuracy.