Publications Details

Publications / Conference Proceeding

High-Temperature Optical Characterization of GaN-Based Light-Emitting Diodes for Future Power Electronic Modules

Madhusoodhanan, Syam; Sabbar, Abbas; Atcitty, Stanley A.; Kaplar, Robert K.; Mantooth, Alan; Yu, Shui Q.; Chen, Zhong

High-temperature optical analysis of three different InGaN/GaN multiple quantum well (MQW) light-emitting diode (LED) structures (peak wavelength λp = 448, 467, and 515 nm) is conducted for possible integration as an optocoupler emitter in high-density power electronic modules. The commercially available LEDs, primarily used in the display (λp = 467 and 515 nm) and lighting (λp = 448 nm) applications, are studied and compared to evaluate if they can satisfy the light output requirements in the optocouplers at high temperatures. The temperature- and intensity-dependent electroluminescence (T-IDEL) measurement technique is used to study the internal quantum efficiency (IQE) of the LEDs. All three LEDs exhibit above 70% IQE at 500 K and stable operation at 800 K without flickering or failure. At 800 K, a promising IQE of above 40% is observed for blue for display (BD) (λp = 467 nm) and green for display (GD) (λp = 515 nm) samples. The blue for light (BL) (λp = 448 nm) sample shows 24% IQE at 800 K.