Publications Details
FY23 Update: Aerosol Sampling for the Canister Deposition Field Demonstration
Bryan, C.R.; Knight, A.W.; Verma, Samay; Maguire, Makeila
This report describes the results of preliminary testing of aerosol monitoring equipment that will be used to continuously monitor the aerosol source term for the multi-year Canister Deposition Field Demonstration (CDFD). These data are required inputs for the development and validation of models for the deposition of dust and potentially corrosive salts on the surface of spent nuclear fuel (SNF) dry storage canisters. Surface salt loads correlate with the extent of corrosion damage on a metal surface, and potentially to the likelihood and timing of initiation of stress corrosion cracks. Aerosols will be monitored at the CDFD site using three instruments. A Dekati® ELPI+ cascade impactor will be used for real-time monitoring of aerosol particle sizes. It will also collect dust in 14 size bins on impactor targets that can be chemically analyzed to determine the soluble salts present as a function of particle size. However, this instrument can only measure dried aerosols, with a diameter of <10 µm. The second instrument is a Topas laser particle size spectrometer, which provides real-time monitoring of aerosol particle sizes up to ~40 µm in size. It monitors both the ambient (potentially deliquesced) aerosol particle size distributions required for the dust deposition models and the distributions of the equivalent dried particles, allowing correlation with the Dekati® data. However, it does not discriminate between inert dust particles and salt aerosols, and it does not retain samples of the different particle sizes for later analysis. The third instrument that will monitor aerosols at the CDFD site is a Clean Air Status and Trends Network (CASTNET) tower, which uses a multiple canister system to collect weekly samples for analysis to total suspended aerosol particle compositions and atmospheric gas concentrations. This status report describes work in FY23 to develop the capabilities for using these tools. In two training exercises, the cascade impactor and laser particle sizer were deployed in two different testing environments, one indoor and one outdoor. For the cascade impactor, the tests provided opportunities for the operators to familiarize themselves with impactor substrate preparation, and post-test sample removal and analysis. For the laser particle sizer, the tests were used to evaluate different instrument parameters, to determine the most appropriate settings for capturing transient events. Data and samples were collected for weeks to months for each test, and the results are presented here. In addition to the preliminary testing, contracts were developed with WSP Analytical Labs for sample preparation and analysis of the cascade impactor samples. The impactor tower from outdoor test was delivered to WSP and used to train the staff there in disassembly, sample extraction, sample analysis, and tower reassembly with new target substrates. These are tasks that WSP will be performing routinely for the CDFD project. The CASTNET system cannot be purchased or tested until an actual site has been selected for the CDFD test. Work for this FY has been restricted to preparation of contracts for purchasing the CASTNET tower, and for sample analysis, once the tower is in operation.