Publications Details
Formation of a fin trailing vortex in undisturbed and interacting flows
Beresh, Steven J.; Henfling, John F.; Spillers, Russell W.
An experiment using fins mounted on a wind tunnel wall has examined the proposition that the interaction between axially-separated aerodynamic control surfaces fundamentally results from an angle of attack superposed upon the downstream fin by the vortex shed from the upstream fin. Particle Image Velocimetry data captured on the surface of a single fin show the formation of the trailing vortex first as a leading-edge vortex, then becoming a tip vortex as it propagates to the fin's spanwise edge. Data acquired on the downstream fin surface in the presence of a trailing vortex shed from an upstream fin may remove this impinging vortex by subtracting its mean velocity field as measured in single-fin experiments, after which the vortex forming on the downstream fin's leeside becomes evident. The properties of the downstream fin's lifting vortex appear to be determined by the total angle of attack imposed upon it, which is a combination of its physical fin cant and the angle of attack induced by the impinging vortex, and are consistent with those of a single fin at equivalent angle of attack.