Publications Details

Publications / Other Report

Evaluation of Nuclear Spent Fuel Disposal in Clay-Bearing Rock - Process Model Development and Experimental Studies

Jove Colon, Carlos F.; Ho, Tuan A.; Lopez, Carlos M.; Rutqvist, Jonny; Guglielmi, Yves; Hu, Mengsu; Sasaki, Tsubasa; Yoon, Sangcheol; Steefel, Carl I.; Tournassat, Christophe; Mital, Utkarsh; Luu, Keurfon; Sauer, Kirsten B.; Caporuscio, Florie A.; Rock, Marlena J.; Zandanel, Amber E.; Zavarin, Mavrik; Wolery, Thomas J.; Chang, Elliot; Han, Sol-Chan; Wainwright, Haruko; Greathouse, Jeffery A.

This report represents the milestone deliverable M2SF-23SN010301072 “Evaluation of Nuclear Spent Fuel Disposal in Clay-Bearing Rock - Process Model Development and Experimental Studies” The report provides a status update of FY23 activities for the work package Argillite Disposal work packages for the DOE-NE Spent Fuel Waste Form Science and Technology (SFWST) Program. Clay-rich geological media (often referred as shale or argillite) are among the most abundant type of sedimentary rock near the Earth’s surface. Argillaceous rock formations have the following advantageous attributes for deep geological nuclear waste disposal: widespread geologic occurrence, found in stable geologic settings, low permeability, self-sealing properties, low effective diffusion coefficient, high sorption capacity, and have the appropriate depth and thickness to host nuclear waste repository concepts. The DOE R&D program under the Spent Fuel Waste Science Technology (SFWST) campaign has made key progress (through experiment, modeling, and testing) in the study of chemical and physical phenomena that could impact the long-term safety assessment of heat-generating nuclear waste disposition in clay/shale/argillaceous rock. International collaboration activities comprising field-scale heater tests, field data monitoring, and laboratory-scale experiments provide key information on changes to the engineered barrier system (EBS) material exposed high thermal loads. Moreover, consideration of direct disposal of large capacity dual-purpose canisters (DPCs) as part of the back-end SNF waste disposition strategy has generated interest in improving our understanding of the effects of elevated temperatures on the engineered barrier system (EBS) design concepts. Chemical and structural analyses of sampled bentonite material from laboratory tests at elevated temperatures are key to the characterization of thermal effects affecting bentonite clay barrier performance. The knowledge provided by these experiments is crucial to constrain the extent of sacrificial zones in the EBS design during the thermal period. Thermal, hydrologic, mechanical, and chemical (THMC) data collected from heater tests and laboratory experiments have been used in the development, validation, and calibration of THMC simulators to model near-field coupled processes. This information leads to the development of simulation approaches to assess issues on coupled processes involving porous media flow, transport, geomechanical phenomena, chemical interactions with barrier/geologic materials, and the development of EBS concepts. These lines of knowledge are central to the design of deep geological backfilled repository concepts where temperature plays a key role in the EBS behavior, potential interactions with host rock, and long-term performance in the safety assessment.