Publications Details

Publications / Conference Paper

DNS of a Mach 14 Flow Over a Sharp Cone in AEDC Tunnel 9

Wagnild, Ross M.; Harris, Shaun R.; Stack, Cory S.; Morreale, Bryan J.

A wind tunnel test from AEDC Tunnel 9 of a hypersonic turbulent boundary layer is analyzed using several fidelities of numerical simulation including Wall-Modeled Large Eddy Simulation (WMLES), Large Eddy Simulation (LES), and Direct Numerical Simulation (DNS). The DNS was forced to transition to turbulence using a broad spectrum of planar, slow acoustic waves based on the freestream spectrum measured in the tunnel. Results show the flow transitions in a reasonably natural process developing into turbulent flow. This is due to several 2nd mode wave packets advecting downstream and eventually breaking down into turbulence with modest friction Reynolds numbers. The surface shear stress and heat flux agree well with a transitional RANS simulation. Comparisons of DNS data to experimental data showreasonable agreement with regard to mean surface quantities aswell as amplitudes of boundary layer disturbances. The DNS does show early transition relative to the experimental data. Several interesting aspects of the DNS and other numerical simulations are discussed. The DNS data are also analyzed through several common methods such as cross-correlations and coherence of the fluctuating surface pressure.