Publications Details
Cyclic loading-unloading impacts on salt cavern stability: Implication for underground hydrogen storage
Chang, Kyung W.; Ross, Tonya S.A.
Underground caverns in salt formations are promising geologic features to store hydrogen (H2) because of salt's extremely low permeability and self-healing behavior.Successful salt-cavern H2 storage schemes must maximize the efficiency of cyclic injection-production while minimizing H2 loss through adjacent damaged salt.The salt cavern storage community, however, has not fully understood the geomechanical behaviors of salt rocks driven by quick operation cycles of H2 injection-production, which may significantly impact the cost-effective storage-recovery performance.Our field-scale generic model captures the impact of combined drag and back stressing on the salt creep behavior corresponding to cycles of compression and extension, which may lead to substantial loss of cavern volumes over time and diminish the cavern performance for H2 storage.Our preliminary findings address that it is essential to develop a new salt constitutive model based on geomechanical tests of site-specific salt rock to probe the cyclic behaviors of salt both beneath and above the dilatancy boundary, including reverse (inverse transient) creep, the Bauschinger effect and fatigue.