Publications Details
Coupled thermal response of objects and participating media in fires and large combustion systems
When an object is subjected to the flow of combustion gas at a different temperature, the thermal responses of the object and the surrounding gas become coupled. The ability to model this interaction is of primary interest in the design of components which must withstand fire environments. One approach has been to decouple the problem and treat the incident flux on the surface of the object as being emitted from a blackbody at an approximate gas temperature. By neglecting the presence of the participating media, this technique overpredicts the heat fluxes initially acting on the object surface. The main goal of this work is to quantify the differences inherent in treating the combustion media as a blackbody as opposed to a gray gas. This objective is accomplished by solving the coupled participating media radiation and conduction heat transfer problem. A transient conduction analysis of a vertical flat plate was performed using a gray gas model to provide a radiation boundary condition. A 1-D finite difference algorithm was used to solve the conduction problem at locations along the plate. The results are presented in terms of nondimensional parameters and include both average and local heat fluxes as a function of time. Early in the transient, a reduction in net heat fluxes of up to 65% was observed for the gray gas results as compared to the blackbody cases. This reduction in the initial net heat flux results in lower surface temperatures for the gray gas case. Due to the initially reduced surface temperatures, the gray gas net heat flux exceeds the net blackbody heat flux with increasing time. For radiation Biot numbers greater than 5, or values of the radiation parameter less than 10-2, the differences inherent in treating the media as a gray gas are negligible and the blackbody assumption is valid. Overall, the results clearly indicate the importance of participating media treatment in the modeling of the thermal response of objects in fires and large combustion systems.